Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ os.environ["GRADIO_LANGUAGE"] = "en"
|
|
| 7 |
|
| 8 |
RESULT_DIR = os.environ.get("MOECAP_RESULT_DIR")
|
| 9 |
if not RESULT_DIR:
|
| 10 |
-
# For testing purposes, you can uncomment the line below
|
| 11 |
# RESULT_DIR = "generic_result_dir"
|
| 12 |
raise RuntimeError(
|
| 13 |
"MOECAP_RESULT_DIR is not set. Please set MOECAP_RESULT_DIR (HF Repo ID) before running app.py"
|
|
@@ -33,13 +33,6 @@ def normalize(val, vmin, vmax, baseline=20):
|
|
| 33 |
return baseline + (val - vmin) / (vmax - vmin) * (100 - baseline)
|
| 34 |
|
| 35 |
|
| 36 |
-
def normalize_reversed(val, vmin, vmax, baseline=20):
|
| 37 |
-
"""Normalize value (reversed - lower is better) to baseline-100 range."""
|
| 38 |
-
if vmax == vmin:
|
| 39 |
-
return baseline + 40
|
| 40 |
-
return baseline + (vmax - val) / (vmax - vmin) * (100 - baseline)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
def normalize_cost(val, max_tick, baseline=20):
|
| 44 |
"""Normalize cost (lower is better)."""
|
| 45 |
if max_tick == 0:
|
|
@@ -50,48 +43,34 @@ def normalize_cost(val, max_tick, baseline=20):
|
|
| 50 |
def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
| 51 |
"""Generate a CAP radar plot from selected rows."""
|
| 52 |
|
| 53 |
-
# Standard layout settings for consistent sizing
|
| 54 |
layout_settings = dict(
|
| 55 |
-
height=750,
|
| 56 |
-
autosize=True,
|
| 57 |
-
margin=dict(t=80, b=100, l=80, r=80),
|
| 58 |
paper_bgcolor='white',
|
| 59 |
plot_bgcolor='white',
|
| 60 |
)
|
| 61 |
|
| 62 |
-
# Validation: max 3 rows
|
| 63 |
if not selected_rows_data or len(selected_rows_data) == 0:
|
| 64 |
fig = go.Figure()
|
| 65 |
fig.add_annotation(
|
| 66 |
text="Please select 1-3 rows from the table to generate radar plot",
|
| 67 |
-
xref="paper", yref="paper",
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
xanchor='center',
|
| 71 |
-
yanchor='middle'
|
| 72 |
-
)
|
| 73 |
-
fig.update_layout(
|
| 74 |
-
xaxis=dict(visible=False),
|
| 75 |
-
yaxis=dict(visible=False),
|
| 76 |
-
**layout_settings
|
| 77 |
)
|
|
|
|
| 78 |
return fig
|
| 79 |
|
| 80 |
if len(selected_rows_data) > 3:
|
| 81 |
fig = go.Figure()
|
| 82 |
fig.add_annotation(
|
| 83 |
text="Error: Please select no more than 3 rows!",
|
| 84 |
-
xref="paper", yref="paper",
|
| 85 |
-
x=0.5, y=0.5, showarrow=False,
|
| 86 |
font=dict(size=18, color="red"),
|
| 87 |
-
xanchor='center',
|
| 88 |
-
yanchor='middle'
|
| 89 |
-
)
|
| 90 |
-
fig.update_layout(
|
| 91 |
-
xaxis=dict(visible=False),
|
| 92 |
-
yaxis=dict(visible=False),
|
| 93 |
-
**layout_settings
|
| 94 |
)
|
|
|
|
| 95 |
return fig
|
| 96 |
|
| 97 |
datasets = [row.get('Dataset', '') for row in selected_rows_data]
|
|
@@ -100,25 +79,17 @@ def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
|
| 100 |
fig = go.Figure()
|
| 101 |
fig.add_annotation(
|
| 102 |
text="Error: Please select rows from the same dataset!",
|
| 103 |
-
xref="paper", yref="paper",
|
| 104 |
-
x=0.5, y=0.5, showarrow=False,
|
| 105 |
font=dict(size=18, color="red"),
|
| 106 |
-
xanchor='center',
|
| 107 |
-
yanchor='middle'
|
| 108 |
-
)
|
| 109 |
-
fig.update_layout(
|
| 110 |
-
xaxis=dict(visible=False),
|
| 111 |
-
yaxis=dict(visible=False),
|
| 112 |
-
**layout_settings
|
| 113 |
)
|
|
|
|
| 114 |
return fig
|
| 115 |
|
| 116 |
dataset_name = datasets[0] if datasets else "Unknown"
|
| 117 |
|
| 118 |
-
# Extract metrics from selected rows
|
| 119 |
data = {}
|
| 120 |
for row in selected_rows_data:
|
| 121 |
-
# Extract model name from HTML or use as-is
|
| 122 |
model_name = row.get('Model', 'Unknown')
|
| 123 |
if isinstance(model_name, str) and 'href' in model_name:
|
| 124 |
try:
|
|
@@ -126,23 +97,19 @@ def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
|
| 126 |
except:
|
| 127 |
pass
|
| 128 |
|
| 129 |
-
# Format legend name: extract name after "/" and add method
|
| 130 |
method = row.get('Method', '')
|
| 131 |
if isinstance(model_name, str) and '/' in model_name:
|
| 132 |
-
legend_name = model_name.split('/')[-1]
|
| 133 |
else:
|
| 134 |
legend_name = str(model_name)
|
| 135 |
|
| 136 |
-
# Add method suffix
|
| 137 |
if method and method not in ['Unknown', '-', '']:
|
| 138 |
legend_name = f"{legend_name}-{method}"
|
| 139 |
|
| 140 |
-
# Get metrics
|
| 141 |
acc = row.get('Accuracy(%)', 0)
|
| 142 |
cost = row.get('Cost($)', 0)
|
| 143 |
throughput = row.get('Decoding T/s', 0)
|
| 144 |
|
| 145 |
-
# Convert to float if needed
|
| 146 |
try:
|
| 147 |
acc = float(acc) if acc not in [None, '-', ''] else 0
|
| 148 |
cost = float(cost) if cost not in [None, '-', ''] else 0
|
|
@@ -151,12 +118,11 @@ def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
|
| 151 |
acc, cost, throughput = 0, 0, 0
|
| 152 |
|
| 153 |
data[legend_name] = {
|
| 154 |
-
'accuracy': acc / 100.0 if acc > 1 else acc,
|
| 155 |
'cost': cost,
|
| 156 |
'throughput': throughput
|
| 157 |
}
|
| 158 |
|
| 159 |
-
# Get min/max for normalization
|
| 160 |
throughputs = [v['throughput'] for v in data.values()]
|
| 161 |
costs = [v['cost'] for v in data.values()]
|
| 162 |
accs = [v['accuracy'] for v in data.values()]
|
|
@@ -177,7 +143,7 @@ def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
|
| 177 |
normalize_cost(values['cost'], cost_max, baseline),
|
| 178 |
normalize(values['accuracy'], acc_min, acc_max, baseline)
|
| 179 |
]
|
| 180 |
-
norm_vals += [norm_vals[0]]
|
| 181 |
|
| 182 |
hovertext = [
|
| 183 |
f"Throughput: {raw_vals[0]:.2f} T/s",
|
|
@@ -197,32 +163,13 @@ def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
|
| 197 |
))
|
| 198 |
|
| 199 |
fig.update_layout(
|
| 200 |
-
title=dict(
|
| 201 |
-
text=f"CAP Radar Plot: {dataset_name}",
|
| 202 |
-
x=0.5,
|
| 203 |
-
xanchor='center',
|
| 204 |
-
font=dict(size=20)
|
| 205 |
-
),
|
| 206 |
polar=dict(
|
| 207 |
-
radialaxis=dict(
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
tickfont=dict(size=12)
|
| 211 |
-
),
|
| 212 |
-
angularaxis=dict(
|
| 213 |
-
tickfont=dict(size=14),
|
| 214 |
-
rotation=90, # Rotate so top is 12 o'clock
|
| 215 |
-
direction='clockwise'
|
| 216 |
-
),
|
| 217 |
-
),
|
| 218 |
-
legend=dict(
|
| 219 |
-
orientation='h',
|
| 220 |
-
yanchor='bottom',
|
| 221 |
-
y=-0.15,
|
| 222 |
-
xanchor='center',
|
| 223 |
-
x=0.5,
|
| 224 |
-
font=dict(size=13)
|
| 225 |
),
|
|
|
|
| 226 |
**layout_settings
|
| 227 |
)
|
| 228 |
|
|
@@ -235,11 +182,9 @@ def json_to_row(path: str, metrics: dict) -> dict:
|
|
| 235 |
model_name = "unknown-model"
|
| 236 |
|
| 237 |
dataset = metrics.get("dataset", "Unknown")
|
| 238 |
-
|
| 239 |
method = metrics.get("method", "Unknown")
|
| 240 |
precision = metrics.get("precision", "Unknown")
|
| 241 |
model_type = metrics.get("model_type", "Unknown")
|
| 242 |
-
|
| 243 |
e2e_s = metrics.get("e2e_s", None)
|
| 244 |
batch_size = metrics.get("batch_size", None)
|
| 245 |
gpu_type = metrics.get("gpu_type", "")
|
|
@@ -258,7 +203,7 @@ def json_to_row(path: str, metrics: dict) -> dict:
|
|
| 258 |
|
| 259 |
if isinstance(model_name, str) and "/" in model_name:
|
| 260 |
hf_url = f"https://huggingface.co/{model_name}"
|
| 261 |
-
model_cell = f"<a href='{hf_url}' target='_blank'>{model_name}</a>"
|
| 262 |
else:
|
| 263 |
model_cell = model_name
|
| 264 |
|
|
@@ -285,421 +230,230 @@ def json_to_row(path: str, metrics: dict) -> dict:
|
|
| 285 |
return row
|
| 286 |
|
| 287 |
|
| 288 |
-
def load_from_dir(
|
| 289 |
-
dir_path: str,
|
| 290 |
-
selected_tasks: List[str] | None = None,
|
| 291 |
-
selected_frameworks: List[str] | None = None,
|
| 292 |
-
selected_model_types: List[str] | None = None,
|
| 293 |
-
selected_precisions: List[str] | None = None,
|
| 294 |
-
search_keyword: str = "",
|
| 295 |
-
force_refresh: bool = False,
|
| 296 |
-
):
|
| 297 |
try:
|
| 298 |
pattern = f"hf://datasets/{dir_path}/**/*.json"
|
| 299 |
dl_mode = "force_redownload" if force_refresh else None
|
| 300 |
-
|
| 301 |
print(f"Fetching from {pattern} (mode={dl_mode})...")
|
| 302 |
-
ds = load_dataset(
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
split="train",
|
| 306 |
-
download_mode=dl_mode,
|
| 307 |
-
)
|
| 308 |
-
except Exception as e:
|
| 309 |
-
empty_html = "<p>No files loaded or Dataset not found.</p>"
|
| 310 |
-
return empty_html, []
|
| 311 |
|
| 312 |
rows = []
|
| 313 |
for i, example in enumerate(ds):
|
| 314 |
-
|
| 315 |
-
metrics = example.get("metrics") or example.get("json") or example
|
| 316 |
-
else:
|
| 317 |
-
metrics = example
|
| 318 |
rows.append(json_to_row(f"{dir_path}#{i}", metrics))
|
| 319 |
|
| 320 |
if not rows:
|
| 321 |
-
|
| 322 |
-
return empty_html, []
|
| 323 |
|
| 324 |
df = pd.DataFrame(rows)
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
df = df[df["
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
df = df[df["
|
| 334 |
-
|
| 335 |
-
if selected_model_types is not None:
|
| 336 |
-
lower_selected = [str(x).lower() for x in selected_model_types]
|
| 337 |
-
df = df[df["Model type"].astype(str).str.lower().isin(lower_selected)]
|
| 338 |
-
|
| 339 |
-
if selected_precisions is not None:
|
| 340 |
-
lower_selected = [str(x).lower() for x in selected_precisions]
|
| 341 |
-
df = df[df["Precision"].astype(str).str.lower().isin(lower_selected)]
|
| 342 |
-
|
| 343 |
if search_keyword and search_keyword.strip():
|
| 344 |
-
|
| 345 |
-
mask = df.astype(str).apply(lambda row: row.str.lower().str.contains(keyword_lower).any(), axis=1)
|
| 346 |
-
df = df[mask]
|
| 347 |
|
| 348 |
if df.empty:
|
| 349 |
-
|
| 350 |
-
return empty_html, []
|
| 351 |
|
| 352 |
df = df.fillna("-")
|
| 353 |
-
|
| 354 |
-
# Insert row number column at the beginning
|
| 355 |
df.insert(0, 'Row #', range(len(df)))
|
| 356 |
|
| 357 |
-
# Create HTML table
|
| 358 |
table_html = f'<div class="table-container">{df.to_html(escape=False, index=False, classes="metrics-table")}</div>'
|
| 359 |
df_without_rownum = df.drop('Row #', axis=1)
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
def auto_refresh_from_dir(
|
| 365 |
-
dir_path: str,
|
| 366 |
-
selected_tasks: List[str] | None = None,
|
| 367 |
-
selected_frameworks: List[str] | None = None,
|
| 368 |
-
selected_model_types: List[str] | None = None,
|
| 369 |
-
selected_precisions: List[str] | None = None,
|
| 370 |
-
search_keyword: str = "",
|
| 371 |
-
):
|
| 372 |
-
return load_from_dir(
|
| 373 |
-
dir_path,
|
| 374 |
-
selected_tasks=selected_tasks,
|
| 375 |
-
selected_frameworks=selected_frameworks,
|
| 376 |
-
selected_model_types=selected_model_types,
|
| 377 |
-
selected_precisions=selected_precisions,
|
| 378 |
-
search_keyword=search_keyword,
|
| 379 |
-
force_refresh=True,
|
| 380 |
-
)
|
| 381 |
|
|
|
|
|
|
|
| 382 |
|
| 383 |
-
def parse_and_generate_plot(df_data
|
| 384 |
-
"""Parse comma-separated indices and generate radar plot."""
|
| 385 |
if not indices_str or not indices_str.strip():
|
| 386 |
return generate_radar_plot([])
|
| 387 |
-
|
| 388 |
try:
|
| 389 |
-
|
| 390 |
-
indices = [int(idx.strip()) for idx in indices_str.split(',') if idx.strip()]
|
| 391 |
-
# Limit to 3 rows
|
| 392 |
-
indices = indices[:3]
|
| 393 |
-
# Get selected rows
|
| 394 |
selected_rows = [df_data[i] for i in indices if 0 <= i < len(df_data)]
|
| 395 |
return generate_radar_plot(selected_rows)
|
| 396 |
-
except
|
| 397 |
return generate_radar_plot([])
|
| 398 |
|
| 399 |
|
| 400 |
-
# Gradio UI
|
| 401 |
-
|
| 402 |
def build_app() -> gr.Blocks:
|
|
|
|
| 403 |
row_css = """
|
| 404 |
-
/*
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
.gradio-container .prose * {
|
| 422 |
-
color: #24292e !important;
|
| 423 |
}
|
| 424 |
|
| 425 |
-
/*
|
| 426 |
.gradio-container .block,
|
| 427 |
-
.gradio-container .
|
| 428 |
-
.gradio-container .
|
| 429 |
-
|
| 430 |
-
.gradio-container .column {
|
| 431 |
-
background-color: transparent !important;
|
| 432 |
-
}
|
| 433 |
-
|
| 434 |
-
/* 4. Fix specific Markdown Containers */
|
| 435 |
-
.filter-section .prose,
|
| 436 |
-
.gradio-container .prose {
|
| 437 |
-
background-color: transparent !important;
|
| 438 |
-
}
|
| 439 |
-
|
| 440 |
-
/* 5. Inputs (Search box) */
|
| 441 |
-
.gradio-container input,
|
| 442 |
-
.gradio-container textarea,
|
| 443 |
-
.gradio-container select {
|
| 444 |
-
background-color: #ffffff !important;
|
| 445 |
-
color: #24292e !important;
|
| 446 |
border-color: #e1e4e8 !important;
|
| 447 |
}
|
| 448 |
|
| 449 |
-
/*
|
| 450 |
-
|
| 451 |
-
.
|
| 452 |
-
background-color:
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
.gradio-container label {
|
| 458 |
-
background-color: white !important;
|
| 459 |
-
border-color: #e1e4e8 !important;
|
| 460 |
}
|
| 461 |
|
| 462 |
-
/*
|
| 463 |
-
.
|
|
|
|
| 464 |
color: #24292e !important;
|
| 465 |
}
|
| 466 |
|
| 467 |
-
/*
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
border-radius: 6px; border: 2px solid #e1e4e8 !important;
|
| 475 |
-
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.06); margin-bottom: 16px;
|
| 476 |
}
|
| 477 |
|
| 478 |
-
/*
|
| 479 |
-
.filter-section
|
| 480 |
-
background:
|
| 481 |
-
border:
|
| 482 |
-
|
| 483 |
-
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.06);
|
| 484 |
}
|
| 485 |
|
| 486 |
-
/* Fix
|
| 487 |
-
.filter-section
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
padding-top: 5px;
|
| 491 |
-
}
|
| 492 |
-
|
| 493 |
-
/* Accordion Header - Fix for Day/Night button colors */
|
| 494 |
-
.gradio-container .accordion button,
|
| 495 |
-
.gradio-container .accordion span {
|
| 496 |
-
background-color: white !important;
|
| 497 |
color: #24292e !important;
|
| 498 |
-
|
| 499 |
-
.gradio-container .accordion svg {
|
| 500 |
-
fill: #24292e !important; /* Arrows */
|
| 501 |
}
|
| 502 |
|
| 503 |
-
/*
|
| 504 |
-
.
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
}
|
| 511 |
-
.gradio-container a:hover { text-decoration: underline; }
|
| 512 |
-
|
| 513 |
-
/* Checkbox Accent Color */
|
| 514 |
-
.gradio-container input[type="checkbox"] { accent-color: #0366d6 !important; }
|
| 515 |
|
| 516 |
-
/*
|
| 517 |
-
/* TABLE STYLING */
|
| 518 |
-
/* ============================================================ */
|
| 519 |
-
|
| 520 |
.table-container {
|
| 521 |
-
overflow-x: auto;
|
| 522 |
-
|
| 523 |
-
|
|
|
|
|
|
|
| 524 |
}
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
border-collapse: collapse; width: 100%; background: white !important;
|
| 528 |
}
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
padding: 10px 14px;
|
| 533 |
-
border: 1.5px solid #e1e4e8;
|
| 534 |
-
white-space: nowrap;
|
| 535 |
-
font-size: 13px;
|
| 536 |
-
text-align: left;
|
| 537 |
-
background-color: white !important;
|
| 538 |
-
color: #24292e !important;
|
| 539 |
}
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
background: #f6f8fa !important; /* Light grey header */
|
| 543 |
-
font-weight: 600; position: sticky; top: 0; z-index: 10;
|
| 544 |
-
border-bottom: 2px solid #d1d5da;
|
| 545 |
}
|
| 546 |
-
|
| 547 |
-
/* Row Number Column */
|
| 548 |
.metrics-table th:first-child, .metrics-table td:first-child {
|
| 549 |
-
|
| 550 |
-
background-color: #f0f0f0 !important;
|
| 551 |
}
|
| 552 |
|
| 553 |
-
/*
|
| 554 |
-
.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
"""
|
| 556 |
|
| 557 |
with gr.Blocks(title="MoE-CAP Dashboard", css=row_css, theme=gr.themes.Default()) as demo:
|
| 558 |
gr.Markdown("# MoE-CAP Dashboard")
|
| 559 |
|
| 560 |
with gr.Row():
|
| 561 |
-
# Left
|
| 562 |
with gr.Column(scale=2):
|
| 563 |
with gr.Group(elem_classes="search-box"):
|
| 564 |
-
search_input = gr.Textbox(
|
| 565 |
-
label="π Search",
|
| 566 |
-
placeholder="Search across all columns...",
|
| 567 |
-
lines=1
|
| 568 |
-
)
|
| 569 |
|
| 570 |
with gr.Group(elem_classes="filter-section"):
|
| 571 |
gr.Markdown("### ποΈ Filters")
|
| 572 |
-
|
| 573 |
dir_path = gr.State(RESULT_DIR)
|
| 574 |
|
| 575 |
task_filter = gr.CheckboxGroup(
|
| 576 |
label="π Tasks",
|
| 577 |
-
choices=[
|
| 578 |
-
("GSM8K", "gsm8k"),
|
| 579 |
-
("LongBench", "longbench"),
|
| 580 |
-
("MMLU", "mmlu"),
|
| 581 |
-
("NuminaMath", "numinamath"),
|
| 582 |
-
("RULER", "ruler")
|
| 583 |
-
],
|
| 584 |
value=["gsm8k", "longbench", "mmlu", "numinamath", "ruler"]
|
| 585 |
)
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
choices=["sglang", "vllm"],
|
| 590 |
-
value=["sglang", "vllm"],
|
| 591 |
-
)
|
| 592 |
-
|
| 593 |
-
model_type_filter = gr.CheckboxGroup(
|
| 594 |
-
label="π€ Model Types",
|
| 595 |
-
choices=["instruct", "thinking"],
|
| 596 |
-
value=["instruct", "thinking"],
|
| 597 |
-
)
|
| 598 |
-
|
| 599 |
-
precision_filter = gr.CheckboxGroup(
|
| 600 |
-
label="π― Precision",
|
| 601 |
-
choices=["bfloat16", "fp8"],
|
| 602 |
-
value=["bfloat16", "fp8"],
|
| 603 |
-
)
|
| 604 |
|
| 605 |
with gr.Accordion("π About Tasks & Metrics", open=True):
|
| 606 |
gr.Markdown(
|
| 607 |
-
"### Tasks\n"
|
| 608 |
-
"- **
|
| 609 |
-
"- **LongBench** β Long-Context Understanding ([paper](https://arxiv.org/abs/2412.15204))\n"
|
| 610 |
-
"- **MMLU** β Multitask Language Understanding ([paper](https://arxiv.org/abs/2009.03300))\n"
|
| 611 |
-
"- **NuminaMath** β Mathematical Reasoning ([paper](http://faculty.bicmr.pku.edu.cn/~dongbin/Publications/numina_dataset.pdf))\n"
|
| 612 |
-
"- **RULER** β Extreme Long-Context Eval ([paper](https://arxiv.org/abs/2404.06654))\n\n"
|
| 613 |
-
|
| 614 |
-
"### Metrics\n"
|
| 615 |
-
"- **E2E(s)** β End-to-End Latency\n"
|
| 616 |
-
"- **Accuracy(%)** β Task Accuracy\n"
|
| 617 |
-
"- **Cost($)** β Inference Cost\n"
|
| 618 |
-
"- **Decoding/Prefill T/s** β Throughput\n"
|
| 619 |
-
"- **S-MBU/MFU(%)** β Hardware Utilization\n"
|
| 620 |
-
"- **TTFT(s)** β Time To First Token\n"
|
| 621 |
-
"- **TPOT(s)** β Time Per Output Token",
|
| 622 |
elem_classes="info-section"
|
| 623 |
)
|
| 624 |
|
| 625 |
-
# Right
|
| 626 |
with gr.Column(scale=5):
|
| 627 |
leaderboard_output = gr.HTML(label="π Results")
|
| 628 |
|
| 629 |
with gr.Group(elem_classes="filter-section"):
|
| 630 |
gr.Markdown("### π CAP Radar Plot")
|
| 631 |
-
gr.Markdown(
|
| 632 |
-
"**How to use:** Look at the 'Row #' column in the table above. "
|
| 633 |
-
"Enter up to 3 row numbers below (separated by commas) and click Generate."
|
| 634 |
-
)
|
| 635 |
|
| 636 |
with gr.Row():
|
| 637 |
-
row_indices_input = gr.Textbox(
|
| 638 |
-
|
| 639 |
-
placeholder="Example: 0,1,2",
|
| 640 |
-
elem_id="row_indices_input",
|
| 641 |
-
scale=3
|
| 642 |
-
)
|
| 643 |
-
generate_btn = gr.Button("π― Generate", variant="primary", scale=1, size="lg")
|
| 644 |
|
| 645 |
-
|
| 646 |
-
radar_plot = gr.Plot(
|
| 647 |
-
label="",
|
| 648 |
-
value=generate_radar_plot([]),
|
| 649 |
-
elem_classes="plot-container"
|
| 650 |
-
)
|
| 651 |
|
|
|
|
| 652 |
df_data_state = gr.State([])
|
|
|
|
| 653 |
|
| 654 |
-
demo.load(
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
)
|
| 659 |
-
|
| 660 |
-
search_input.change(
|
| 661 |
-
fn=load_from_dir,
|
| 662 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 663 |
-
outputs=[leaderboard_output, df_data_state],
|
| 664 |
-
)
|
| 665 |
|
| 666 |
-
|
| 667 |
-
fn=load_from_dir,
|
| 668 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 669 |
-
outputs=[leaderboard_output, df_data_state],
|
| 670 |
-
)
|
| 671 |
-
framework_filter.change(
|
| 672 |
-
fn=load_from_dir,
|
| 673 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 674 |
-
outputs=[leaderboard_output, df_data_state],
|
| 675 |
-
)
|
| 676 |
-
model_type_filter.change(
|
| 677 |
-
fn=load_from_dir,
|
| 678 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 679 |
-
outputs=[leaderboard_output, df_data_state],
|
| 680 |
-
)
|
| 681 |
-
precision_filter.change(
|
| 682 |
-
fn=load_from_dir,
|
| 683 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 684 |
-
outputs=[leaderboard_output, df_data_state],
|
| 685 |
-
)
|
| 686 |
-
|
| 687 |
-
# Generate plot on button click
|
| 688 |
-
generate_btn.click(
|
| 689 |
-
fn=parse_and_generate_plot,
|
| 690 |
-
inputs=[df_data_state, row_indices_input],
|
| 691 |
-
outputs=[radar_plot]
|
| 692 |
-
)
|
| 693 |
|
| 694 |
-
|
| 695 |
-
timer.tick(
|
| 696 |
-
fn=auto_refresh_from_dir,
|
| 697 |
-
inputs=[dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input],
|
| 698 |
-
outputs=[leaderboard_output, df_data_state],
|
| 699 |
-
)
|
| 700 |
|
| 701 |
return demo
|
| 702 |
-
|
| 703 |
if __name__ == "__main__":
|
| 704 |
app = build_app()
|
| 705 |
app.launch()
|
|
|
|
| 7 |
|
| 8 |
RESULT_DIR = os.environ.get("MOECAP_RESULT_DIR")
|
| 9 |
if not RESULT_DIR:
|
| 10 |
+
# For testing purposes, you can uncomment the line below:
|
| 11 |
# RESULT_DIR = "generic_result_dir"
|
| 12 |
raise RuntimeError(
|
| 13 |
"MOECAP_RESULT_DIR is not set. Please set MOECAP_RESULT_DIR (HF Repo ID) before running app.py"
|
|
|
|
| 33 |
return baseline + (val - vmin) / (vmax - vmin) * (100 - baseline)
|
| 34 |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
def normalize_cost(val, max_tick, baseline=20):
|
| 37 |
"""Normalize cost (lower is better)."""
|
| 38 |
if max_tick == 0:
|
|
|
|
| 43 |
def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
|
| 44 |
"""Generate a CAP radar plot from selected rows."""
|
| 45 |
|
|
|
|
| 46 |
layout_settings = dict(
|
| 47 |
+
height=750,
|
| 48 |
+
autosize=True,
|
| 49 |
+
margin=dict(t=80, b=100, l=80, r=80),
|
| 50 |
paper_bgcolor='white',
|
| 51 |
plot_bgcolor='white',
|
| 52 |
)
|
| 53 |
|
|
|
|
| 54 |
if not selected_rows_data or len(selected_rows_data) == 0:
|
| 55 |
fig = go.Figure()
|
| 56 |
fig.add_annotation(
|
| 57 |
text="Please select 1-3 rows from the table to generate radar plot",
|
| 58 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
|
| 59 |
+
font=dict(size=16, color="black"), # Ensure text is black
|
| 60 |
+
xanchor='center', yanchor='middle'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
+
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
|
| 63 |
return fig
|
| 64 |
|
| 65 |
if len(selected_rows_data) > 3:
|
| 66 |
fig = go.Figure()
|
| 67 |
fig.add_annotation(
|
| 68 |
text="Error: Please select no more than 3 rows!",
|
| 69 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
|
|
|
|
| 70 |
font=dict(size=18, color="red"),
|
| 71 |
+
xanchor='center', yanchor='middle'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
)
|
| 73 |
+
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
|
| 74 |
return fig
|
| 75 |
|
| 76 |
datasets = [row.get('Dataset', '') for row in selected_rows_data]
|
|
|
|
| 79 |
fig = go.Figure()
|
| 80 |
fig.add_annotation(
|
| 81 |
text="Error: Please select rows from the same dataset!",
|
| 82 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
|
|
|
|
| 83 |
font=dict(size=18, color="red"),
|
| 84 |
+
xanchor='center', yanchor='middle'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
+
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
|
| 87 |
return fig
|
| 88 |
|
| 89 |
dataset_name = datasets[0] if datasets else "Unknown"
|
| 90 |
|
|
|
|
| 91 |
data = {}
|
| 92 |
for row in selected_rows_data:
|
|
|
|
| 93 |
model_name = row.get('Model', 'Unknown')
|
| 94 |
if isinstance(model_name, str) and 'href' in model_name:
|
| 95 |
try:
|
|
|
|
| 97 |
except:
|
| 98 |
pass
|
| 99 |
|
|
|
|
| 100 |
method = row.get('Method', '')
|
| 101 |
if isinstance(model_name, str) and '/' in model_name:
|
| 102 |
+
legend_name = model_name.split('/')[-1]
|
| 103 |
else:
|
| 104 |
legend_name = str(model_name)
|
| 105 |
|
|
|
|
| 106 |
if method and method not in ['Unknown', '-', '']:
|
| 107 |
legend_name = f"{legend_name}-{method}"
|
| 108 |
|
|
|
|
| 109 |
acc = row.get('Accuracy(%)', 0)
|
| 110 |
cost = row.get('Cost($)', 0)
|
| 111 |
throughput = row.get('Decoding T/s', 0)
|
| 112 |
|
|
|
|
| 113 |
try:
|
| 114 |
acc = float(acc) if acc not in [None, '-', ''] else 0
|
| 115 |
cost = float(cost) if cost not in [None, '-', ''] else 0
|
|
|
|
| 118 |
acc, cost, throughput = 0, 0, 0
|
| 119 |
|
| 120 |
data[legend_name] = {
|
| 121 |
+
'accuracy': acc / 100.0 if acc > 1 else acc,
|
| 122 |
'cost': cost,
|
| 123 |
'throughput': throughput
|
| 124 |
}
|
| 125 |
|
|
|
|
| 126 |
throughputs = [v['throughput'] for v in data.values()]
|
| 127 |
costs = [v['cost'] for v in data.values()]
|
| 128 |
accs = [v['accuracy'] for v in data.values()]
|
|
|
|
| 143 |
normalize_cost(values['cost'], cost_max, baseline),
|
| 144 |
normalize(values['accuracy'], acc_min, acc_max, baseline)
|
| 145 |
]
|
| 146 |
+
norm_vals += [norm_vals[0]]
|
| 147 |
|
| 148 |
hovertext = [
|
| 149 |
f"Throughput: {raw_vals[0]:.2f} T/s",
|
|
|
|
| 163 |
))
|
| 164 |
|
| 165 |
fig.update_layout(
|
| 166 |
+
title=dict(text=f"CAP Radar Plot: {dataset_name}", x=0.5, xanchor='center', font=dict(size=20, color="black")),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
polar=dict(
|
| 168 |
+
radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=12, color="black")),
|
| 169 |
+
angularaxis=dict(tickfont=dict(size=14, color="black"), rotation=90, direction='clockwise'),
|
| 170 |
+
bgcolor="white"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
),
|
| 172 |
+
legend=dict(orientation='h', yanchor='bottom', y=-0.15, xanchor='center', x=0.5, font=dict(size=13, color="black")),
|
| 173 |
**layout_settings
|
| 174 |
)
|
| 175 |
|
|
|
|
| 182 |
model_name = "unknown-model"
|
| 183 |
|
| 184 |
dataset = metrics.get("dataset", "Unknown")
|
|
|
|
| 185 |
method = metrics.get("method", "Unknown")
|
| 186 |
precision = metrics.get("precision", "Unknown")
|
| 187 |
model_type = metrics.get("model_type", "Unknown")
|
|
|
|
| 188 |
e2e_s = metrics.get("e2e_s", None)
|
| 189 |
batch_size = metrics.get("batch_size", None)
|
| 190 |
gpu_type = metrics.get("gpu_type", "")
|
|
|
|
| 203 |
|
| 204 |
if isinstance(model_name, str) and "/" in model_name:
|
| 205 |
hf_url = f"https://huggingface.co/{model_name}"
|
| 206 |
+
model_cell = f"<a href='{hf_url}' target='_blank' style='color: #0366d6; text-decoration: none;'>{model_name}</a>"
|
| 207 |
else:
|
| 208 |
model_cell = model_name
|
| 209 |
|
|
|
|
| 230 |
return row
|
| 231 |
|
| 232 |
|
| 233 |
+
def load_from_dir(dir_path: str, selected_tasks=None, selected_frameworks=None, selected_model_types=None, selected_precisions=None, search_keyword="", force_refresh=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
try:
|
| 235 |
pattern = f"hf://datasets/{dir_path}/**/*.json"
|
| 236 |
dl_mode = "force_redownload" if force_refresh else None
|
|
|
|
| 237 |
print(f"Fetching from {pattern} (mode={dl_mode})...")
|
| 238 |
+
ds = load_dataset("json", data_files={"train": pattern}, split="train", download_mode=dl_mode)
|
| 239 |
+
except Exception:
|
| 240 |
+
return "<p style='color:black'>No files loaded or Dataset not found.</p>", []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
rows = []
|
| 243 |
for i, example in enumerate(ds):
|
| 244 |
+
metrics = example.get("metrics") or example.get("json") or example
|
|
|
|
|
|
|
|
|
|
| 245 |
rows.append(json_to_row(f"{dir_path}#{i}", metrics))
|
| 246 |
|
| 247 |
if not rows:
|
| 248 |
+
return "<p style='color:black'>No records found.</p>", []
|
|
|
|
| 249 |
|
| 250 |
df = pd.DataFrame(rows)
|
| 251 |
|
| 252 |
+
if selected_tasks:
|
| 253 |
+
df = df[df["Dataset"].astype(str).str.lower().isin([x.lower() for x in selected_tasks])]
|
| 254 |
+
if selected_frameworks:
|
| 255 |
+
df = df[df["Method"].astype(str).str.lower().isin([str(x).lower() for x in selected_frameworks])]
|
| 256 |
+
if selected_model_types:
|
| 257 |
+
df = df[df["Model type"].astype(str).str.lower().isin([str(x).lower() for x in selected_model_types])]
|
| 258 |
+
if selected_precisions:
|
| 259 |
+
df = df[df["Precision"].astype(str).str.lower().isin([str(x).lower() for x in selected_precisions])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
if search_keyword and search_keyword.strip():
|
| 261 |
+
df = df[df.astype(str).apply(lambda row: row.str.lower().str.contains(search_keyword.strip().lower()).any(), axis=1)]
|
|
|
|
|
|
|
| 262 |
|
| 263 |
if df.empty:
|
| 264 |
+
return "<p style='color:black'>No records found.</p>", []
|
|
|
|
| 265 |
|
| 266 |
df = df.fillna("-")
|
|
|
|
|
|
|
| 267 |
df.insert(0, 'Row #', range(len(df)))
|
| 268 |
|
|
|
|
| 269 |
table_html = f'<div class="table-container">{df.to_html(escape=False, index=False, classes="metrics-table")}</div>'
|
| 270 |
df_without_rownum = df.drop('Row #', axis=1)
|
| 271 |
+
return table_html, df_without_rownum.to_dict('records')
|
| 272 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
def auto_refresh_from_dir(dir_path, tasks, frameworks, types, precisions, search):
|
| 275 |
+
return load_from_dir(dir_path, tasks, frameworks, types, precisions, search, force_refresh=True)
|
| 276 |
|
| 277 |
+
def parse_and_generate_plot(df_data, indices_str):
|
|
|
|
| 278 |
if not indices_str or not indices_str.strip():
|
| 279 |
return generate_radar_plot([])
|
|
|
|
| 280 |
try:
|
| 281 |
+
indices = [int(idx.strip()) for idx in indices_str.split(',') if idx.strip()][:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
selected_rows = [df_data[i] for i in indices if 0 <= i < len(df_data)]
|
| 283 |
return generate_radar_plot(selected_rows)
|
| 284 |
+
except:
|
| 285 |
return generate_radar_plot([])
|
| 286 |
|
| 287 |
|
|
|
|
|
|
|
| 288 |
def build_app() -> gr.Blocks:
|
| 289 |
+
# NUCLEAR CSS FIX: Overwrite all generic Gradio variables to force light mode
|
| 290 |
row_css = """
|
| 291 |
+
/* 1. FORCE LIGHT VARIABLES GLOBALLY */
|
| 292 |
+
:root, .gradio-container, body {
|
| 293 |
+
--body-background-fill: #f5f7fa !important;
|
| 294 |
+
--body-text-color: #374151 !important;
|
| 295 |
+
--background-fill-primary: #ffffff !important;
|
| 296 |
+
--background-fill-secondary: #f3f4f6 !important;
|
| 297 |
+
--border-color-primary: #e5e7eb !important;
|
| 298 |
+
--block-background-fill: #ffffff !important;
|
| 299 |
+
--block-label-text-color: #374151 !important;
|
| 300 |
+
--block-title-text-color: #1f2937 !important;
|
| 301 |
+
--input-background-fill: #ffffff !important;
|
| 302 |
+
--color-accent: #0366d6 !important;
|
| 303 |
+
|
| 304 |
+
/* Reset dark mode specific variables to light values */
|
| 305 |
+
--neutral-50: #f9fafb; --neutral-100: #f3f4f6; --neutral-200: #e5e7eb;
|
| 306 |
+
--neutral-300: #d1d5da; --neutral-400: #9ca3af; --neutral-500: #6b7280;
|
| 307 |
+
--neutral-600: #4b5563; --neutral-700: #374151; --neutral-800: #1f2937;
|
|
|
|
|
|
|
| 308 |
}
|
| 309 |
|
| 310 |
+
/* 2. RESET STANDARD CONTAINERS */
|
| 311 |
.gradio-container .block,
|
| 312 |
+
.gradio-container .panel,
|
| 313 |
+
.gradio-container .form {
|
| 314 |
+
background-color: white !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
border-color: #e1e4e8 !important;
|
| 316 |
}
|
| 317 |
|
| 318 |
+
/* 3. SPECIFIC FIX FOR THE DARK "FILTERS" and "RADAR" SECTIONS */
|
| 319 |
+
/* This targets the class you added in python: elem_classes="filter-section" */
|
| 320 |
+
.filter-section {
|
| 321 |
+
background-color: #ffffff !important;
|
| 322 |
+
border: 2px solid #e1e4e8 !important;
|
| 323 |
+
border-radius: 8px !important;
|
| 324 |
+
padding: 16px !important;
|
| 325 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important;
|
|
|
|
|
|
|
|
|
|
| 326 |
}
|
| 327 |
|
| 328 |
+
/* Ensure NO child elements inside filter-section have dark backgrounds */
|
| 329 |
+
.filter-section * {
|
| 330 |
+
background-color: transparent !important;
|
| 331 |
color: #24292e !important;
|
| 332 |
}
|
| 333 |
|
| 334 |
+
/* Re-apply white background to inputs specifically */
|
| 335 |
+
.filter-section input,
|
| 336 |
+
.filter-section textarea,
|
| 337 |
+
.filter-section select {
|
| 338 |
+
background-color: #ffffff !important;
|
| 339 |
+
border: 1px solid #d1d5da !important;
|
| 340 |
+
color: #24292e !important;
|
|
|
|
|
|
|
| 341 |
}
|
| 342 |
|
| 343 |
+
/* Fix Checkboxes: Ensure the box itself is visible */
|
| 344 |
+
.filter-section input[type="checkbox"] {
|
| 345 |
+
background-color: #ffffff !important;
|
| 346 |
+
border: 1px solid #d1d5da !important;
|
| 347 |
+
accent-color: #0366d6 !important;
|
|
|
|
| 348 |
}
|
| 349 |
|
| 350 |
+
/* Fix "How to use" Text (Markdown/Prose) */
|
| 351 |
+
.filter-section .prose,
|
| 352 |
+
.filter-section .prose p,
|
| 353 |
+
.filter-section .prose strong {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
color: #24292e !important;
|
| 355 |
+
opacity: 1 !important;
|
|
|
|
|
|
|
| 356 |
}
|
| 357 |
|
| 358 |
+
/* 4. SEARCH BOX */
|
| 359 |
+
.search-box {
|
| 360 |
+
background: white !important;
|
| 361 |
+
padding: 16px !important;
|
| 362 |
+
border-radius: 6px;
|
| 363 |
+
border: 2px solid #e1e4e8 !important;
|
| 364 |
+
margin-bottom: 16px;
|
| 365 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
/* 5. TABLE STYLING */
|
|
|
|
|
|
|
|
|
|
| 368 |
.table-container {
|
| 369 |
+
overflow-x: auto;
|
| 370 |
+
max-height: 75vh;
|
| 371 |
+
border: 2px solid #e1e4e8;
|
| 372 |
+
border-radius: 6px;
|
| 373 |
+
background: white !important;
|
| 374 |
}
|
| 375 |
+
table.metrics-table {
|
| 376 |
+
width: 100%; border-collapse: collapse; background: white !important;
|
|
|
|
| 377 |
}
|
| 378 |
+
table.metrics-table th, table.metrics-table td {
|
| 379 |
+
padding: 10px 14px; border: 1px solid #e1e4e8;
|
| 380 |
+
white-space: nowrap; font-size: 13px; color: #24292e !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
}
|
| 382 |
+
table.metrics-table th {
|
| 383 |
+
background: #f6f8fa !important; font-weight: 600; position: sticky; top: 0;
|
|
|
|
|
|
|
|
|
|
| 384 |
}
|
|
|
|
|
|
|
| 385 |
.metrics-table th:first-child, .metrics-table td:first-child {
|
| 386 |
+
background-color: #f0f0f0 !important; text-align: center;
|
|
|
|
| 387 |
}
|
| 388 |
|
| 389 |
+
/* 6. PLOT CONTAINER */
|
| 390 |
+
.plot-container { width: 100% !important; background: white !important; }
|
| 391 |
+
|
| 392 |
+
/* 7. LINKS */
|
| 393 |
+
a { color: #0366d6 !important; text-decoration: none; }
|
| 394 |
+
a:hover { text-decoration: underline; }
|
| 395 |
"""
|
| 396 |
|
| 397 |
with gr.Blocks(title="MoE-CAP Dashboard", css=row_css, theme=gr.themes.Default()) as demo:
|
| 398 |
gr.Markdown("# MoE-CAP Dashboard")
|
| 399 |
|
| 400 |
with gr.Row():
|
| 401 |
+
# Left Sidebar
|
| 402 |
with gr.Column(scale=2):
|
| 403 |
with gr.Group(elem_classes="search-box"):
|
| 404 |
+
search_input = gr.Textbox(label="π Search", placeholder="Search...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
with gr.Group(elem_classes="filter-section"):
|
| 407 |
gr.Markdown("### ποΈ Filters")
|
|
|
|
| 408 |
dir_path = gr.State(RESULT_DIR)
|
| 409 |
|
| 410 |
task_filter = gr.CheckboxGroup(
|
| 411 |
label="π Tasks",
|
| 412 |
+
choices=[("GSM8K", "gsm8k"), ("LongBench", "longbench"), ("MMLU", "mmlu"), ("NuminaMath", "numinamath"), ("RULER", "ruler")],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
value=["gsm8k", "longbench", "mmlu", "numinamath", "ruler"]
|
| 414 |
)
|
| 415 |
+
framework_filter = gr.CheckboxGroup(label="βοΈ Frameworks", choices=["sglang", "vllm"], value=["sglang", "vllm"])
|
| 416 |
+
model_type_filter = gr.CheckboxGroup(label="π€ Model Types", choices=["instruct", "thinking"], value=["instruct", "thinking"])
|
| 417 |
+
precision_filter = gr.CheckboxGroup(label="π― Precision", choices=["bfloat16", "fp8"], value=["bfloat16", "fp8"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
with gr.Accordion("π About Tasks & Metrics", open=True):
|
| 420 |
gr.Markdown(
|
| 421 |
+
"### Tasks\n- **GSM8K**, **LongBench**, **MMLU**, **NuminaMath**, **RULER**\n\n"
|
| 422 |
+
"### Metrics\n- **E2E(s)**: Latency | **Cost($)** | **T/s**: Throughput | **S-MBU/MFU**: Utilization",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
elem_classes="info-section"
|
| 424 |
)
|
| 425 |
|
| 426 |
+
# Right Main Content
|
| 427 |
with gr.Column(scale=5):
|
| 428 |
leaderboard_output = gr.HTML(label="π Results")
|
| 429 |
|
| 430 |
with gr.Group(elem_classes="filter-section"):
|
| 431 |
gr.Markdown("### π CAP Radar Plot")
|
| 432 |
+
gr.Markdown("**How to use:** Look at the 'Row #' column in the table. Enter row numbers (e.g., 0,1,2) and click Generate.")
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
with gr.Row():
|
| 435 |
+
row_indices_input = gr.Textbox(label="Row Numbers", placeholder="0,1,2", scale=3)
|
| 436 |
+
generate_btn = gr.Button("π― Generate", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
+
radar_plot = gr.Plot(value=generate_radar_plot([]), elem_classes="plot-container")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
+
# State & Events
|
| 441 |
df_data_state = gr.State([])
|
| 442 |
+
inputs = [dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input]
|
| 443 |
|
| 444 |
+
demo.load(fn=auto_refresh_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
| 445 |
+
search_input.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
| 446 |
+
task_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
| 447 |
+
framework_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
| 448 |
+
model_type_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
| 449 |
+
precision_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
+
generate_btn.click(fn=parse_and_generate_plot, inputs=[df_data_state, row_indices_input], outputs=[radar_plot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
|
| 453 |
+
gr.Timer(60.0).tick(fn=auto_refresh_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
return demo
|
| 456 |
+
|
| 457 |
if __name__ == "__main__":
|
| 458 |
app = build_app()
|
| 459 |
app.launch()
|