Spaces:
Runtime error
Runtime error
resolved conflict
Browse files- .github/workflows/quality.yml +29 -0
- Makefile +8 -0
- app.py +36 -18
- evaluation.py +46 -0
- pyproject.toml +2 -0
- utils.py +13 -4
.github/workflows/quality.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Code quality
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
pull_request:
|
| 8 |
+
branches:
|
| 9 |
+
- main
|
| 10 |
+
|
| 11 |
+
jobs:
|
| 12 |
+
|
| 13 |
+
check_code_quality:
|
| 14 |
+
name: Check code quality
|
| 15 |
+
runs-on: ubuntu-latest
|
| 16 |
+
steps:
|
| 17 |
+
- name: Checkout code
|
| 18 |
+
uses: actions/checkout@v2
|
| 19 |
+
- name: Setup Python environment
|
| 20 |
+
uses: actions/setup-python@v2
|
| 21 |
+
with:
|
| 22 |
+
python-version: 3.9
|
| 23 |
+
- name: Install dependencies
|
| 24 |
+
run: |
|
| 25 |
+
python -m pip install --upgrade pip
|
| 26 |
+
python -m pip install black isort flake8
|
| 27 |
+
- name: Code quality
|
| 28 |
+
run: |
|
| 29 |
+
make quality
|
Makefile
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
style:
|
| 2 |
+
python -m black --line-length 119 --target-version py39 .
|
| 3 |
+
python -m isort .
|
| 4 |
+
|
| 5 |
+
quality:
|
| 6 |
+
python -m black --check --line-length 119 --target-version py39 .
|
| 7 |
+
python -m isort --check-only .
|
| 8 |
+
python -m flake8 --max-line-length 119
|
app.py
CHANGED
|
@@ -10,8 +10,8 @@ from huggingface_hub import list_datasets
|
|
| 10 |
from tqdm import tqdm
|
| 11 |
import inspect
|
| 12 |
|
| 13 |
-
from
|
| 14 |
-
|
| 15 |
|
| 16 |
if Path(".env").is_file():
|
| 17 |
load_dotenv(".env")
|
|
@@ -28,7 +28,7 @@ TASK_TO_ID = {
|
|
| 28 |
# "multi_label_classification": 3, # Not fully supported in AutoTrain
|
| 29 |
"entity_extraction": 4,
|
| 30 |
"extractive_question_answering": 5,
|
| 31 |
-
"translation": 6,
|
| 32 |
"summarization": 8,
|
| 33 |
}
|
| 34 |
|
|
@@ -77,14 +77,14 @@ def get_supported_metrics():
|
|
| 77 |
supported_metrics = get_supported_metrics()
|
| 78 |
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
st.title("Evaluation as a Service")
|
| 84 |
st.markdown(
|
| 85 |
"""
|
| 86 |
Welcome to Hugging Face's Evaluation as a Service! This application allows
|
| 87 |
-
you to evaluate
|
| 88 |
select the dataset and configuration below. The results of your evaluation
|
| 89 |
will be displayed on the public leaderboard
|
| 90 |
[here](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
|
@@ -107,18 +107,22 @@ if metadata is None:
|
|
| 107 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 108 |
|
| 109 |
with st.expander("Advanced configuration"):
|
| 110 |
-
|
| 111 |
selected_task = st.selectbox(
|
| 112 |
"Select a task",
|
| 113 |
SUPPORTED_TASKS,
|
| 114 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 115 |
)
|
| 116 |
-
|
| 117 |
configs = get_dataset_config_names(selected_dataset)
|
| 118 |
selected_config = st.selectbox("Select a config", configs)
|
| 119 |
|
| 120 |
-
|
| 121 |
-
splits_resp = http_get(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if splits_resp.status_code == 200:
|
| 123 |
split_names = []
|
| 124 |
all_splits = splits_resp.json()
|
|
@@ -132,11 +136,15 @@ with st.expander("Advanced configuration"):
|
|
| 132 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
| 133 |
)
|
| 134 |
|
| 135 |
-
|
| 136 |
rows_resp = http_get(
|
| 137 |
path="/rows",
|
| 138 |
domain=DATASETS_PREVIEW_API,
|
| 139 |
-
params={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
).json()
|
| 141 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 142 |
|
|
@@ -178,7 +186,7 @@ with st.expander("Advanced configuration"):
|
|
| 178 |
st.markdown("`tags` column")
|
| 179 |
with col2:
|
| 180 |
tokens_col = st.selectbox(
|
| 181 |
-
"This column should contain the
|
| 182 |
col_names,
|
| 183 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
| 184 |
)
|
|
@@ -322,7 +330,10 @@ with st.form(key="form"):
|
|
| 322 |
}
|
| 323 |
print(f"Payload: {payload}")
|
| 324 |
project_json_resp = http_post(
|
| 325 |
-
path="/projects/create",
|
|
|
|
|
|
|
|
|
|
| 326 |
).json()
|
| 327 |
print(project_json_resp)
|
| 328 |
|
|
@@ -337,7 +348,11 @@ with st.form(key="form"):
|
|
| 337 |
payload=payload,
|
| 338 |
token=HF_TOKEN,
|
| 339 |
domain=AUTOTRAIN_BACKEND_API,
|
| 340 |
-
params={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
).json()
|
| 342 |
print(data_json_resp)
|
| 343 |
if data_json_resp["download_status"] == 1:
|
|
@@ -353,8 +368,11 @@ with st.form(key="form"):
|
|
| 353 |
f"""
|
| 354 |
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
| 355 |
|
| 356 |
-
|
|
|
|
| 357 |
"""
|
| 358 |
)
|
| 359 |
else:
|
| 360 |
-
st.error("π Oh noes, there was an error submitting your
|
|
|
|
|
|
|
|
|
| 10 |
from tqdm import tqdm
|
| 11 |
import inspect
|
| 12 |
|
| 13 |
+
from evaluation import filter_evaluated_models
|
| 14 |
+
from utils import get_compatible_models, get_key, get_metadata, http_get, http_post
|
| 15 |
|
| 16 |
if Path(".env").is_file():
|
| 17 |
load_dotenv(".env")
|
|
|
|
| 28 |
# "multi_label_classification": 3, # Not fully supported in AutoTrain
|
| 29 |
"entity_extraction": 4,
|
| 30 |
"extractive_question_answering": 5,
|
| 31 |
+
# "translation": 6, $ Not fully supported in AutoTrain evaluation
|
| 32 |
"summarization": 8,
|
| 33 |
}
|
| 34 |
|
|
|
|
| 77 |
supported_metrics = get_supported_metrics()
|
| 78 |
|
| 79 |
|
| 80 |
+
#######
|
| 81 |
+
# APP #
|
| 82 |
+
#######
|
| 83 |
st.title("Evaluation as a Service")
|
| 84 |
st.markdown(
|
| 85 |
"""
|
| 86 |
Welcome to Hugging Face's Evaluation as a Service! This application allows
|
| 87 |
+
you to evaluate π€ Transformers models with a dataset on the Hub. Please
|
| 88 |
select the dataset and configuration below. The results of your evaluation
|
| 89 |
will be displayed on the public leaderboard
|
| 90 |
[here](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
|
|
|
| 107 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 108 |
|
| 109 |
with st.expander("Advanced configuration"):
|
| 110 |
+
# Select task
|
| 111 |
selected_task = st.selectbox(
|
| 112 |
"Select a task",
|
| 113 |
SUPPORTED_TASKS,
|
| 114 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 115 |
)
|
| 116 |
+
# Select config
|
| 117 |
configs = get_dataset_config_names(selected_dataset)
|
| 118 |
selected_config = st.selectbox("Select a config", configs)
|
| 119 |
|
| 120 |
+
# Select splits
|
| 121 |
+
splits_resp = http_get(
|
| 122 |
+
path="/splits",
|
| 123 |
+
domain=DATASETS_PREVIEW_API,
|
| 124 |
+
params={"dataset": selected_dataset},
|
| 125 |
+
)
|
| 126 |
if splits_resp.status_code == 200:
|
| 127 |
split_names = []
|
| 128 |
all_splits = splits_resp.json()
|
|
|
|
| 136 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
| 137 |
)
|
| 138 |
|
| 139 |
+
# Select columns
|
| 140 |
rows_resp = http_get(
|
| 141 |
path="/rows",
|
| 142 |
domain=DATASETS_PREVIEW_API,
|
| 143 |
+
params={
|
| 144 |
+
"dataset": selected_dataset,
|
| 145 |
+
"config": selected_config,
|
| 146 |
+
"split": selected_split,
|
| 147 |
+
},
|
| 148 |
).json()
|
| 149 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 150 |
|
|
|
|
| 186 |
st.markdown("`tags` column")
|
| 187 |
with col2:
|
| 188 |
tokens_col = st.selectbox(
|
| 189 |
+
"This column should contain the array of tokens",
|
| 190 |
col_names,
|
| 191 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
| 192 |
)
|
|
|
|
| 330 |
}
|
| 331 |
print(f"Payload: {payload}")
|
| 332 |
project_json_resp = http_post(
|
| 333 |
+
path="/projects/create",
|
| 334 |
+
payload=payload,
|
| 335 |
+
token=HF_TOKEN,
|
| 336 |
+
domain=AUTOTRAIN_BACKEND_API,
|
| 337 |
).json()
|
| 338 |
print(project_json_resp)
|
| 339 |
|
|
|
|
| 348 |
payload=payload,
|
| 349 |
token=HF_TOKEN,
|
| 350 |
domain=AUTOTRAIN_BACKEND_API,
|
| 351 |
+
params={
|
| 352 |
+
"type": "dataset",
|
| 353 |
+
"config_name": selected_config,
|
| 354 |
+
"split_name": selected_split,
|
| 355 |
+
},
|
| 356 |
).json()
|
| 357 |
print(data_json_resp)
|
| 358 |
if data_json_resp["download_status"] == 1:
|
|
|
|
| 368 |
f"""
|
| 369 |
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
| 370 |
|
| 371 |
+
π Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) \
|
| 372 |
+
to view the results from your submission
|
| 373 |
"""
|
| 374 |
)
|
| 375 |
else:
|
| 376 |
+
st.error("π Oh noes, there was an error submitting your evaluation job!")
|
| 377 |
+
else:
|
| 378 |
+
st.warning("β οΈ No models were selected for evaluation!")
|
evaluation.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from huggingface_hub import DatasetFilter, HfApi
|
| 5 |
+
from huggingface_hub.hf_api import DatasetInfo
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass(frozen=True, eq=True)
|
| 9 |
+
class EvaluationInfo:
|
| 10 |
+
task: str
|
| 11 |
+
model: str
|
| 12 |
+
dataset_name: str
|
| 13 |
+
dataset_config: str
|
| 14 |
+
dataset_split: str
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def compute_evaluation_id(dataset_info: DatasetInfo) -> int:
|
| 18 |
+
metadata = dataset_info.cardData["eval_info"]
|
| 19 |
+
metadata.pop("col_mapping", None)
|
| 20 |
+
evaluation_info = EvaluationInfo(**metadata)
|
| 21 |
+
return hash(evaluation_info)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_evaluation_ids():
|
| 25 |
+
filt = DatasetFilter(author="autoevaluate")
|
| 26 |
+
evaluation_datasets = HfApi().list_datasets(filter=filt, full=True)
|
| 27 |
+
return [compute_evaluation_id(dset) for dset in evaluation_datasets]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split):
|
| 31 |
+
evaluation_ids = get_evaluation_ids()
|
| 32 |
+
|
| 33 |
+
for idx, model in enumerate(models):
|
| 34 |
+
evaluation_info = EvaluationInfo(
|
| 35 |
+
task=task,
|
| 36 |
+
model=model,
|
| 37 |
+
dataset_name=dataset_name,
|
| 38 |
+
dataset_config=dataset_config,
|
| 39 |
+
dataset_split=dataset_split,
|
| 40 |
+
)
|
| 41 |
+
candidate_id = hash(evaluation_info)
|
| 42 |
+
if candidate_id in evaluation_ids:
|
| 43 |
+
st.info(f"Model {model} has already been evaluated on this configuration. Skipping evaluation...")
|
| 44 |
+
models.pop(idx)
|
| 45 |
+
|
| 46 |
+
return models
|
pyproject.toml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.isort]
|
| 2 |
+
profile = "black"
|
utils.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
|
| 3 |
import requests
|
| 4 |
-
from huggingface_hub import
|
| 5 |
|
| 6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
"binary_classification": "text-classification",
|
|
@@ -27,7 +27,11 @@ def http_post(path: str, token: str, payload=None, domain: str = None, params=No
|
|
| 27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 28 |
try:
|
| 29 |
response = requests.post(
|
| 30 |
-
url=domain + path,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
)
|
| 32 |
except requests.exceptions.ConnectionError:
|
| 33 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
@@ -39,7 +43,10 @@ def http_get(path: str, domain: str, token: str = None, params: dict = None) ->
|
|
| 39 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 40 |
try:
|
| 41 |
response = requests.get(
|
| 42 |
-
url=domain + path,
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
except requests.exceptions.ConnectionError:
|
| 45 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
@@ -58,7 +65,9 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
| 58 |
def get_compatible_models(task, dataset_name):
|
| 59 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 60 |
filt = ModelFilter(
|
| 61 |
-
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
compatible_models = api.list_models(filter=filt)
|
| 64 |
return [model.modelId for model in compatible_models]
|
|
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
|
| 3 |
import requests
|
| 4 |
+
from huggingface_hub import HfApi, ModelFilter
|
| 5 |
|
| 6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
"binary_classification": "text-classification",
|
|
|
|
| 27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 28 |
try:
|
| 29 |
response = requests.post(
|
| 30 |
+
url=domain + path,
|
| 31 |
+
json=payload,
|
| 32 |
+
headers=get_auth_headers(token=token),
|
| 33 |
+
allow_redirects=True,
|
| 34 |
+
params=params,
|
| 35 |
)
|
| 36 |
except requests.exceptions.ConnectionError:
|
| 37 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
|
| 43 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 44 |
try:
|
| 45 |
response = requests.get(
|
| 46 |
+
url=domain + path,
|
| 47 |
+
headers=get_auth_headers(token=token),
|
| 48 |
+
allow_redirects=True,
|
| 49 |
+
params=params,
|
| 50 |
)
|
| 51 |
except requests.exceptions.ConnectionError:
|
| 52 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
|
| 65 |
def get_compatible_models(task, dataset_name):
|
| 66 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 67 |
filt = ModelFilter(
|
| 68 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
| 69 |
+
trained_dataset=dataset_name,
|
| 70 |
+
library=["transformers", "pytorch"],
|
| 71 |
)
|
| 72 |
compatible_models = api.list_models(filter=filt)
|
| 73 |
return [model.modelId for model in compatible_models]
|