Spaces:
Runtime error
Runtime error
Refactor task names
Browse files
app.py
CHANGED
|
@@ -29,19 +29,6 @@ TASK_TO_ID = {
|
|
| 29 |
# "single_column_regression": 10,
|
| 30 |
}
|
| 31 |
|
| 32 |
-
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 33 |
-
"binary_classification": "text-classification",
|
| 34 |
-
"multi_class_classification": "text-classification",
|
| 35 |
-
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
|
| 36 |
-
"entity_extraction": "token-classification",
|
| 37 |
-
"extractive_question_answering": "question-answering",
|
| 38 |
-
"translation": "translation",
|
| 39 |
-
"summarization": "summarization",
|
| 40 |
-
# "single_column_regression": 10,
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
|
| 44 |
-
|
| 45 |
###########
|
| 46 |
### APP ###
|
| 47 |
###########
|
|
@@ -74,7 +61,7 @@ if metadata is None:
|
|
| 74 |
|
| 75 |
with st.expander("Advanced configuration"):
|
| 76 |
## Select task
|
| 77 |
-
selected_task = st.selectbox("Select a task", list(
|
| 78 |
### Select config
|
| 79 |
configs = get_dataset_config_names(selected_dataset)
|
| 80 |
selected_config = st.selectbox("Select a config", configs)
|
|
@@ -84,9 +71,7 @@ with st.expander("Advanced configuration"):
|
|
| 84 |
if splits_resp.status_code == 200:
|
| 85 |
split_names = []
|
| 86 |
all_splits = splits_resp.json()
|
| 87 |
-
print(all_splits)
|
| 88 |
for split in all_splits["splits"]:
|
| 89 |
-
print(selected_config)
|
| 90 |
if split["config"] == selected_config:
|
| 91 |
split_names.append(split["split"])
|
| 92 |
|
|
@@ -120,7 +105,7 @@ with st.expander("Advanced configuration"):
|
|
| 120 |
# TODO: make it task specific
|
| 121 |
col_mapping = {}
|
| 122 |
with col1:
|
| 123 |
-
if selected_task
|
| 124 |
st.markdown("`text` column")
|
| 125 |
st.text("")
|
| 126 |
st.text("")
|
|
@@ -153,11 +138,10 @@ with st.form(key="form"):
|
|
| 153 |
|
| 154 |
if submit_button:
|
| 155 |
project_id = str(uuid.uuid4())[:3]
|
| 156 |
-
autotrain_task_name = HUB_TASK_TO_AUTOTRAIN_TASK[selected_task]
|
| 157 |
payload = {
|
| 158 |
"username": AUTOTRAIN_USERNAME,
|
| 159 |
"proj_name": f"my-eval-project-{project_id}",
|
| 160 |
-
"task": TASK_TO_ID[
|
| 161 |
"config": {
|
| 162 |
"language": "en",
|
| 163 |
"max_models": 5,
|
|
@@ -181,7 +165,7 @@ with st.form(key="form"):
|
|
| 181 |
|
| 182 |
if project_json_resp["created"]:
|
| 183 |
payload = {
|
| 184 |
-
"split": 4,
|
| 185 |
"col_mapping": col_mapping,
|
| 186 |
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
| 187 |
}
|
|
|
|
| 29 |
# "single_column_regression": 10,
|
| 30 |
}
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
###########
|
| 33 |
### APP ###
|
| 34 |
###########
|
|
|
|
| 61 |
|
| 62 |
with st.expander("Advanced configuration"):
|
| 63 |
## Select task
|
| 64 |
+
selected_task = st.selectbox("Select a task", list(TASK_TO_ID.keys()))
|
| 65 |
### Select config
|
| 66 |
configs = get_dataset_config_names(selected_dataset)
|
| 67 |
selected_config = st.selectbox("Select a config", configs)
|
|
|
|
| 71 |
if splits_resp.status_code == 200:
|
| 72 |
split_names = []
|
| 73 |
all_splits = splits_resp.json()
|
|
|
|
| 74 |
for split in all_splits["splits"]:
|
|
|
|
| 75 |
if split["config"] == selected_config:
|
| 76 |
split_names.append(split["split"])
|
| 77 |
|
|
|
|
| 105 |
# TODO: make it task specific
|
| 106 |
col_mapping = {}
|
| 107 |
with col1:
|
| 108 |
+
if selected_task in ["binary_classification", "multi_class_classification"]:
|
| 109 |
st.markdown("`text` column")
|
| 110 |
st.text("")
|
| 111 |
st.text("")
|
|
|
|
| 138 |
|
| 139 |
if submit_button:
|
| 140 |
project_id = str(uuid.uuid4())[:3]
|
|
|
|
| 141 |
payload = {
|
| 142 |
"username": AUTOTRAIN_USERNAME,
|
| 143 |
"proj_name": f"my-eval-project-{project_id}",
|
| 144 |
+
"task": TASK_TO_ID[selected_task],
|
| 145 |
"config": {
|
| 146 |
"language": "en",
|
| 147 |
"max_models": 5,
|
|
|
|
| 165 |
|
| 166 |
if project_json_resp["created"]:
|
| 167 |
payload = {
|
| 168 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
| 169 |
"col_mapping": col_mapping,
|
| 170 |
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
| 171 |
}
|
utils.py
CHANGED
|
@@ -3,6 +3,19 @@ from typing import Dict, Union
|
|
| 3 |
import requests
|
| 4 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
api = HfApi()
|
| 7 |
|
| 8 |
|
|
@@ -44,6 +57,6 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
| 44 |
|
| 45 |
|
| 46 |
def get_compatible_models(task, dataset_name):
|
| 47 |
-
filt = ModelFilter(task=task, trained_dataset=dataset_name, library="transformers")
|
| 48 |
compatible_models = api.list_models(filter=filt)
|
| 49 |
return [model.modelId for model in compatible_models]
|
|
|
|
| 3 |
import requests
|
| 4 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
| 5 |
|
| 6 |
+
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
+
"binary_classification": "text-classification",
|
| 8 |
+
"multi_class_classification": "text-classification",
|
| 9 |
+
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
|
| 10 |
+
"entity_extraction": "token-classification",
|
| 11 |
+
"extractive_question_answering": "question-answering",
|
| 12 |
+
"translation": "translation",
|
| 13 |
+
"summarization": "summarization",
|
| 14 |
+
# "single_column_regression": 10,
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
|
| 18 |
+
|
| 19 |
api = HfApi()
|
| 20 |
|
| 21 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def get_compatible_models(task, dataset_name):
|
| 60 |
+
filt = ModelFilter(task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_name, library="transformers")
|
| 61 |
compatible_models = api.list_models(filter=filt)
|
| 62 |
return [model.modelId for model in compatible_models]
|