Spaces:
Runtime error
Runtime error
Archive project
Browse files
app.py
CHANGED
|
@@ -131,6 +131,9 @@ SUPPORTED_METRICS = [
|
|
| 131 |
# APP #
|
| 132 |
#######
|
| 133 |
st.title("Evaluation on the Hub")
|
|
|
|
|
|
|
|
|
|
| 134 |
st.markdown(
|
| 135 |
"""
|
| 136 |
Welcome to Hugging Face's automatic model evaluator π!
|
|
@@ -146,548 +149,548 @@ st.markdown(
|
|
| 146 |
"""
|
| 147 |
)
|
| 148 |
|
| 149 |
-
all_datasets = [d.id for d in list_datasets()]
|
| 150 |
-
query_params = st.experimental_get_query_params()
|
| 151 |
-
if "first_query_params" not in st.session_state:
|
| 152 |
-
|
| 153 |
-
first_query_params = st.session_state.first_query_params
|
| 154 |
-
default_dataset = all_datasets[0]
|
| 155 |
-
if "dataset" in first_query_params:
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
selected_dataset = st.selectbox(
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
)
|
| 166 |
-
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
| 167 |
-
|
| 168 |
-
# Check if selected dataset can be streamed
|
| 169 |
-
is_valid_dataset = http_get(
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
).json()
|
| 174 |
-
if is_valid_dataset["viewer"] is False and is_valid_dataset["preview"] is False:
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
metadata = get_metadata(selected_dataset, token=HF_TOKEN)
|
| 181 |
-
print(f"INFO -- Dataset metadata: {metadata}")
|
| 182 |
-
if metadata is None:
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
with st.expander("Advanced configuration"):
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
with st.form(key="form"):
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
|
|
|
| 131 |
# APP #
|
| 132 |
#######
|
| 133 |
st.title("Evaluation on the Hub")
|
| 134 |
+
st.warning(
|
| 135 |
+
"**β οΈ This project has been archived. If you want to evaluate LLMs, checkout [this collection](https://huggingface.co/collections/clefourrier/llm-leaderboards-and-benchmarks-β¨-64f99d2e11e92ca5568a7cce) of leaderboards.**"
|
| 136 |
+
)
|
| 137 |
st.markdown(
|
| 138 |
"""
|
| 139 |
Welcome to Hugging Face's automatic model evaluator π!
|
|
|
|
| 149 |
"""
|
| 150 |
)
|
| 151 |
|
| 152 |
+
# all_datasets = [d.id for d in list_datasets()]
|
| 153 |
+
# query_params = st.experimental_get_query_params()
|
| 154 |
+
# if "first_query_params" not in st.session_state:
|
| 155 |
+
# st.session_state.first_query_params = query_params
|
| 156 |
+
# first_query_params = st.session_state.first_query_params
|
| 157 |
+
# default_dataset = all_datasets[0]
|
| 158 |
+
# if "dataset" in first_query_params:
|
| 159 |
+
# if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in all_datasets:
|
| 160 |
+
# default_dataset = first_query_params["dataset"][0]
|
| 161 |
+
|
| 162 |
+
# selected_dataset = st.selectbox(
|
| 163 |
+
# "Select a dataset",
|
| 164 |
+
# all_datasets,
|
| 165 |
+
# index=all_datasets.index(default_dataset),
|
| 166 |
+
# help="""Datasets with metadata can be evaluated with 1-click. Configure an evaluation job to add \
|
| 167 |
+
# new metadata to a dataset card.""",
|
| 168 |
+
# )
|
| 169 |
+
# st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
| 170 |
+
|
| 171 |
+
# # Check if selected dataset can be streamed
|
| 172 |
+
# is_valid_dataset = http_get(
|
| 173 |
+
# path="/is-valid",
|
| 174 |
+
# domain=DATASETS_PREVIEW_API,
|
| 175 |
+
# params={"dataset": selected_dataset},
|
| 176 |
+
# ).json()
|
| 177 |
+
# if is_valid_dataset["viewer"] is False and is_valid_dataset["preview"] is False:
|
| 178 |
+
# st.error(
|
| 179 |
+
# """The dataset you selected is not currently supported. Open a \
|
| 180 |
+
# [discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) for support."""
|
| 181 |
+
# )
|
| 182 |
+
|
| 183 |
+
# metadata = get_metadata(selected_dataset, token=HF_TOKEN)
|
| 184 |
+
# print(f"INFO -- Dataset metadata: {metadata}")
|
| 185 |
+
# if metadata is None:
|
| 186 |
+
# st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 187 |
+
|
| 188 |
+
# with st.expander("Advanced configuration"):
|
| 189 |
+
# # Select task
|
| 190 |
+
# selected_task = st.selectbox(
|
| 191 |
+
# "Select a task",
|
| 192 |
+
# SUPPORTED_TASKS,
|
| 193 |
+
# index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 194 |
+
# help="""Don't see your favourite task here? Open a \
|
| 195 |
+
# [discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) to request it!""",
|
| 196 |
+
# )
|
| 197 |
+
# # Select config
|
| 198 |
+
# configs = get_dataset_config_names(selected_dataset)
|
| 199 |
+
# selected_config = st.selectbox(
|
| 200 |
+
# "Select a config",
|
| 201 |
+
# configs,
|
| 202 |
+
# help="""Some datasets contain several sub-datasets, known as _configurations_. \
|
| 203 |
+
# Select one to evaluate your models on. \
|
| 204 |
+
# See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
|
| 205 |
+
# """,
|
| 206 |
+
# )
|
| 207 |
+
# # Some datasets have multiple metadata (one per config), so we grab the one associated with the selected config
|
| 208 |
+
# config_metadata = get_config_metadata(selected_config, metadata)
|
| 209 |
+
# print(f"INFO -- Config metadata: {config_metadata}")
|
| 210 |
+
|
| 211 |
+
# # Select splits
|
| 212 |
+
# splits_resp = http_get(
|
| 213 |
+
# path="/splits",
|
| 214 |
+
# domain=DATASETS_PREVIEW_API,
|
| 215 |
+
# params={"dataset": selected_dataset},
|
| 216 |
+
# )
|
| 217 |
+
# if splits_resp.status_code == 200:
|
| 218 |
+
# split_names = []
|
| 219 |
+
# all_splits = splits_resp.json()
|
| 220 |
+
# for split in all_splits["splits"]:
|
| 221 |
+
# if split["config"] == selected_config:
|
| 222 |
+
# split_names.append(split["split"])
|
| 223 |
+
|
| 224 |
+
# if config_metadata is not None:
|
| 225 |
+
# eval_split = config_metadata["splits"].get("eval_split", None)
|
| 226 |
+
# else:
|
| 227 |
+
# eval_split = None
|
| 228 |
+
# selected_split = st.selectbox(
|
| 229 |
+
# "Select a split",
|
| 230 |
+
# split_names,
|
| 231 |
+
# index=split_names.index(eval_split) if eval_split is not None else 0,
|
| 232 |
+
# help="Be wary when evaluating models on the `train` split.",
|
| 233 |
+
# )
|
| 234 |
+
|
| 235 |
+
# # Select columns
|
| 236 |
+
# rows_resp = http_get(
|
| 237 |
+
# path="/first-rows",
|
| 238 |
+
# domain=DATASETS_PREVIEW_API,
|
| 239 |
+
# params={
|
| 240 |
+
# "dataset": selected_dataset,
|
| 241 |
+
# "config": selected_config,
|
| 242 |
+
# "split": selected_split,
|
| 243 |
+
# },
|
| 244 |
+
# ).json()
|
| 245 |
+
# col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 246 |
+
|
| 247 |
+
# st.markdown("**Map your dataset columns**")
|
| 248 |
+
# st.markdown(
|
| 249 |
+
# """The model evaluator uses a standardised set of column names for the input examples and labels. \
|
| 250 |
+
# Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
|
| 251 |
+
# )
|
| 252 |
+
# col1, col2 = st.columns(2)
|
| 253 |
+
|
| 254 |
+
# # TODO: find a better way to layout these items
|
| 255 |
+
# # TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
|
| 256 |
+
# col_mapping = {}
|
| 257 |
+
# if selected_task in ["binary_classification", "multi_class_classification"]:
|
| 258 |
+
# with col1:
|
| 259 |
+
# st.markdown("`text` column")
|
| 260 |
+
# st.text("")
|
| 261 |
+
# st.text("")
|
| 262 |
+
# st.text("")
|
| 263 |
+
# st.text("")
|
| 264 |
+
# st.markdown("`target` column")
|
| 265 |
+
# with col2:
|
| 266 |
+
# text_col = st.selectbox(
|
| 267 |
+
# "This column should contain the text to be classified",
|
| 268 |
+
# col_names,
|
| 269 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 270 |
+
# if config_metadata is not None
|
| 271 |
+
# else 0,
|
| 272 |
+
# )
|
| 273 |
+
# target_col = st.selectbox(
|
| 274 |
+
# "This column should contain the labels associated with the text",
|
| 275 |
+
# col_names,
|
| 276 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 277 |
+
# if config_metadata is not None
|
| 278 |
+
# else 0,
|
| 279 |
+
# )
|
| 280 |
+
# col_mapping[text_col] = "text"
|
| 281 |
+
# col_mapping[target_col] = "target"
|
| 282 |
+
|
| 283 |
+
# elif selected_task == "text_zero_shot_classification":
|
| 284 |
+
# with col1:
|
| 285 |
+
# st.markdown("`text` column")
|
| 286 |
+
# st.text("")
|
| 287 |
+
# st.text("")
|
| 288 |
+
# st.text("")
|
| 289 |
+
# st.text("")
|
| 290 |
+
# st.markdown("`classes` column")
|
| 291 |
+
# st.text("")
|
| 292 |
+
# st.text("")
|
| 293 |
+
# st.text("")
|
| 294 |
+
# st.text("")
|
| 295 |
+
# st.markdown("`target` column")
|
| 296 |
+
# with col2:
|
| 297 |
+
# text_col = st.selectbox(
|
| 298 |
+
# "This column should contain the text to be classified",
|
| 299 |
+
# col_names,
|
| 300 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 301 |
+
# if config_metadata is not None
|
| 302 |
+
# else 0,
|
| 303 |
+
# )
|
| 304 |
+
# classes_col = st.selectbox(
|
| 305 |
+
# "This column should contain the classes associated with the text",
|
| 306 |
+
# col_names,
|
| 307 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "classes"))
|
| 308 |
+
# if config_metadata is not None
|
| 309 |
+
# else 0,
|
| 310 |
+
# )
|
| 311 |
+
# target_col = st.selectbox(
|
| 312 |
+
# "This column should contain the index of the correct class",
|
| 313 |
+
# col_names,
|
| 314 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 315 |
+
# if config_metadata is not None
|
| 316 |
+
# else 0,
|
| 317 |
+
# )
|
| 318 |
+
# col_mapping[text_col] = "text"
|
| 319 |
+
# col_mapping[classes_col] = "classes"
|
| 320 |
+
# col_mapping[target_col] = "target"
|
| 321 |
+
|
| 322 |
+
# if selected_task in ["natural_language_inference"]:
|
| 323 |
+
# config_metadata = get_config_metadata(selected_config, metadata)
|
| 324 |
+
# with col1:
|
| 325 |
+
# st.markdown("`text1` column")
|
| 326 |
+
# st.text("")
|
| 327 |
+
# st.text("")
|
| 328 |
+
# st.text("")
|
| 329 |
+
# st.text("")
|
| 330 |
+
# st.text("")
|
| 331 |
+
# st.markdown("`text2` column")
|
| 332 |
+
# st.text("")
|
| 333 |
+
# st.text("")
|
| 334 |
+
# st.text("")
|
| 335 |
+
# st.text("")
|
| 336 |
+
# st.text("")
|
| 337 |
+
# st.markdown("`target` column")
|
| 338 |
+
# with col2:
|
| 339 |
+
# text1_col = st.selectbox(
|
| 340 |
+
# "This column should contain the first text passage to be classified",
|
| 341 |
+
# col_names,
|
| 342 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "text1"))
|
| 343 |
+
# if config_metadata is not None
|
| 344 |
+
# else 0,
|
| 345 |
+
# )
|
| 346 |
+
# text2_col = st.selectbox(
|
| 347 |
+
# "This column should contain the second text passage to be classified",
|
| 348 |
+
# col_names,
|
| 349 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "text2"))
|
| 350 |
+
# if config_metadata is not None
|
| 351 |
+
# else 0,
|
| 352 |
+
# )
|
| 353 |
+
# target_col = st.selectbox(
|
| 354 |
+
# "This column should contain the labels associated with the text",
|
| 355 |
+
# col_names,
|
| 356 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 357 |
+
# if config_metadata is not None
|
| 358 |
+
# else 0,
|
| 359 |
+
# )
|
| 360 |
+
# col_mapping[text1_col] = "text1"
|
| 361 |
+
# col_mapping[text2_col] = "text2"
|
| 362 |
+
# col_mapping[target_col] = "target"
|
| 363 |
+
|
| 364 |
+
# elif selected_task == "entity_extraction":
|
| 365 |
+
# with col1:
|
| 366 |
+
# st.markdown("`tokens` column")
|
| 367 |
+
# st.text("")
|
| 368 |
+
# st.text("")
|
| 369 |
+
# st.text("")
|
| 370 |
+
# st.text("")
|
| 371 |
+
# st.markdown("`tags` column")
|
| 372 |
+
# with col2:
|
| 373 |
+
# tokens_col = st.selectbox(
|
| 374 |
+
# "This column should contain the array of tokens to be classified",
|
| 375 |
+
# col_names,
|
| 376 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "tokens"))
|
| 377 |
+
# if config_metadata is not None
|
| 378 |
+
# else 0,
|
| 379 |
+
# )
|
| 380 |
+
# tags_col = st.selectbox(
|
| 381 |
+
# "This column should contain the labels associated with each part of the text",
|
| 382 |
+
# col_names,
|
| 383 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "tags"))
|
| 384 |
+
# if config_metadata is not None
|
| 385 |
+
# else 0,
|
| 386 |
+
# )
|
| 387 |
+
# col_mapping[tokens_col] = "tokens"
|
| 388 |
+
# col_mapping[tags_col] = "tags"
|
| 389 |
+
|
| 390 |
+
# elif selected_task == "translation":
|
| 391 |
+
# with col1:
|
| 392 |
+
# st.markdown("`source` column")
|
| 393 |
+
# st.text("")
|
| 394 |
+
# st.text("")
|
| 395 |
+
# st.text("")
|
| 396 |
+
# st.text("")
|
| 397 |
+
# st.markdown("`target` column")
|
| 398 |
+
# with col2:
|
| 399 |
+
# text_col = st.selectbox(
|
| 400 |
+
# "This column should contain the text to be translated",
|
| 401 |
+
# col_names,
|
| 402 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "source"))
|
| 403 |
+
# if config_metadata is not None
|
| 404 |
+
# else 0,
|
| 405 |
+
# )
|
| 406 |
+
# target_col = st.selectbox(
|
| 407 |
+
# "This column should contain the target translation",
|
| 408 |
+
# col_names,
|
| 409 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 410 |
+
# if config_metadata is not None
|
| 411 |
+
# else 0,
|
| 412 |
+
# )
|
| 413 |
+
# col_mapping[text_col] = "source"
|
| 414 |
+
# col_mapping[target_col] = "target"
|
| 415 |
+
|
| 416 |
+
# elif selected_task == "summarization":
|
| 417 |
+
# with col1:
|
| 418 |
+
# st.markdown("`text` column")
|
| 419 |
+
# st.text("")
|
| 420 |
+
# st.text("")
|
| 421 |
+
# st.text("")
|
| 422 |
+
# st.text("")
|
| 423 |
+
# st.markdown("`target` column")
|
| 424 |
+
# with col2:
|
| 425 |
+
# text_col = st.selectbox(
|
| 426 |
+
# "This column should contain the text to be summarized",
|
| 427 |
+
# col_names,
|
| 428 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 429 |
+
# if config_metadata is not None
|
| 430 |
+
# else 0,
|
| 431 |
+
# )
|
| 432 |
+
# target_col = st.selectbox(
|
| 433 |
+
# "This column should contain the target summary",
|
| 434 |
+
# col_names,
|
| 435 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 436 |
+
# if config_metadata is not None
|
| 437 |
+
# else 0,
|
| 438 |
+
# )
|
| 439 |
+
# col_mapping[text_col] = "text"
|
| 440 |
+
# col_mapping[target_col] = "target"
|
| 441 |
+
|
| 442 |
+
# elif selected_task == "extractive_question_answering":
|
| 443 |
+
# if config_metadata is not None:
|
| 444 |
+
# col_mapping = config_metadata["col_mapping"]
|
| 445 |
+
# # Hub YAML parser converts periods to hyphens, so we remap them here
|
| 446 |
+
# col_mapping = format_col_mapping(col_mapping)
|
| 447 |
+
# with col1:
|
| 448 |
+
# st.markdown("`context` column")
|
| 449 |
+
# st.text("")
|
| 450 |
+
# st.text("")
|
| 451 |
+
# st.text("")
|
| 452 |
+
# st.text("")
|
| 453 |
+
# st.markdown("`question` column")
|
| 454 |
+
# st.text("")
|
| 455 |
+
# st.text("")
|
| 456 |
+
# st.text("")
|
| 457 |
+
# st.text("")
|
| 458 |
+
# st.markdown("`answers.text` column")
|
| 459 |
+
# st.text("")
|
| 460 |
+
# st.text("")
|
| 461 |
+
# st.text("")
|
| 462 |
+
# st.text("")
|
| 463 |
+
# st.markdown("`answers.answer_start` column")
|
| 464 |
+
# with col2:
|
| 465 |
+
# context_col = st.selectbox(
|
| 466 |
+
# "This column should contain the question's context",
|
| 467 |
+
# col_names,
|
| 468 |
+
# index=col_names.index(get_key(col_mapping, "context")) if config_metadata is not None else 0,
|
| 469 |
+
# )
|
| 470 |
+
# question_col = st.selectbox(
|
| 471 |
+
# "This column should contain the question to be answered, given the context",
|
| 472 |
+
# col_names,
|
| 473 |
+
# index=col_names.index(get_key(col_mapping, "question")) if config_metadata is not None else 0,
|
| 474 |
+
# )
|
| 475 |
+
# answers_text_col = st.selectbox(
|
| 476 |
+
# "This column should contain example answers to the question, extracted from the context",
|
| 477 |
+
# col_names,
|
| 478 |
+
# index=col_names.index(get_key(col_mapping, "answers.text")) if config_metadata is not None else 0,
|
| 479 |
+
# )
|
| 480 |
+
# answers_start_col = st.selectbox(
|
| 481 |
+
# "This column should contain the indices in the context of the first character of each `answers.text`",
|
| 482 |
+
# col_names,
|
| 483 |
+
# index=col_names.index(get_key(col_mapping, "answers.answer_start"))
|
| 484 |
+
# if config_metadata is not None
|
| 485 |
+
# else 0,
|
| 486 |
+
# )
|
| 487 |
+
# col_mapping[context_col] = "context"
|
| 488 |
+
# col_mapping[question_col] = "question"
|
| 489 |
+
# col_mapping[answers_text_col] = "answers.text"
|
| 490 |
+
# col_mapping[answers_start_col] = "answers.answer_start"
|
| 491 |
+
# elif selected_task in ["image_binary_classification", "image_multi_class_classification"]:
|
| 492 |
+
# with col1:
|
| 493 |
+
# st.markdown("`image` column")
|
| 494 |
+
# st.text("")
|
| 495 |
+
# st.text("")
|
| 496 |
+
# st.text("")
|
| 497 |
+
# st.text("")
|
| 498 |
+
# st.markdown("`target` column")
|
| 499 |
+
# with col2:
|
| 500 |
+
# image_col = st.selectbox(
|
| 501 |
+
# "This column should contain the images to be classified",
|
| 502 |
+
# col_names,
|
| 503 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "image"))
|
| 504 |
+
# if config_metadata is not None
|
| 505 |
+
# else 0,
|
| 506 |
+
# )
|
| 507 |
+
# target_col = st.selectbox(
|
| 508 |
+
# "This column should contain the labels associated with the images",
|
| 509 |
+
# col_names,
|
| 510 |
+
# index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 511 |
+
# if config_metadata is not None
|
| 512 |
+
# else 0,
|
| 513 |
+
# )
|
| 514 |
+
# col_mapping[image_col] = "image"
|
| 515 |
+
# col_mapping[target_col] = "target"
|
| 516 |
+
|
| 517 |
+
# # Select metrics
|
| 518 |
+
# st.markdown("**Select metrics**")
|
| 519 |
+
# st.markdown("The following metrics will be computed")
|
| 520 |
+
# html_string = " ".join(
|
| 521 |
+
# [
|
| 522 |
+
# '<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
|
| 523 |
+
# + '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
|
| 524 |
+
# + 'padding-left:5px;color:white">'
|
| 525 |
+
# + metric
|
| 526 |
+
# + "</div></div>"
|
| 527 |
+
# for metric in TASK_TO_DEFAULT_METRICS[selected_task]
|
| 528 |
+
# ]
|
| 529 |
+
# )
|
| 530 |
+
# st.markdown(html_string, unsafe_allow_html=True)
|
| 531 |
+
# selected_metrics = st.multiselect(
|
| 532 |
+
# "(Optional) Select additional metrics",
|
| 533 |
+
# sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
|
| 534 |
+
# help="""User-selected metrics will be computed with their default arguments. \
|
| 535 |
+
# For example, `f1` will report results for binary labels. \
|
| 536 |
+
# Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
|
| 537 |
+
# )
|
| 538 |
+
|
| 539 |
+
# with st.form(key="form"):
|
| 540 |
+
# compatible_models = get_compatible_models(selected_task, [selected_dataset])
|
| 541 |
+
# selected_models = st.multiselect(
|
| 542 |
+
# "Select the models you wish to evaluate",
|
| 543 |
+
# compatible_models,
|
| 544 |
+
# help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
|
| 545 |
+
# [model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
| 546 |
+
# )
|
| 547 |
+
# print("INFO -- Selected models before filter:", selected_models)
|
| 548 |
+
|
| 549 |
+
# hf_username = st.text_input("Enter your π€ Hub username to be notified when the evaluation is finished")
|
| 550 |
+
|
| 551 |
+
# submit_button = st.form_submit_button("Evaluate models π")
|
| 552 |
+
|
| 553 |
+
# if submit_button:
|
| 554 |
+
# if len(hf_username) == 0:
|
| 555 |
+
# st.warning("No π€ Hub username provided! Please enter your username and try again.")
|
| 556 |
+
# elif len(selected_models) == 0:
|
| 557 |
+
# st.warning("β οΈ No models were selected for evaluation! Please select at least one model and try again.")
|
| 558 |
+
# elif len(selected_models) > 10:
|
| 559 |
+
# st.warning("Only 10 models can be evaluated at once. Please select fewer models and try again.")
|
| 560 |
+
# else:
|
| 561 |
+
# # Filter out previously evaluated models
|
| 562 |
+
# selected_models = filter_evaluated_models(
|
| 563 |
+
# selected_models,
|
| 564 |
+
# selected_task,
|
| 565 |
+
# selected_dataset,
|
| 566 |
+
# selected_config,
|
| 567 |
+
# selected_split,
|
| 568 |
+
# selected_metrics,
|
| 569 |
+
# )
|
| 570 |
+
# print("INFO -- Selected models after filter:", selected_models)
|
| 571 |
+
# if len(selected_models) > 0:
|
| 572 |
+
# project_payload = {
|
| 573 |
+
# "username": AUTOTRAIN_USERNAME,
|
| 574 |
+
# "proj_name": create_autotrain_project_name(selected_dataset, selected_config),
|
| 575 |
+
# "task": TASK_TO_ID[selected_task],
|
| 576 |
+
# "config": {
|
| 577 |
+
# "language": AUTOTRAIN_TASK_TO_LANG[selected_task]
|
| 578 |
+
# if selected_task in AUTOTRAIN_TASK_TO_LANG
|
| 579 |
+
# else "en",
|
| 580 |
+
# "max_models": 5,
|
| 581 |
+
# "instance": {
|
| 582 |
+
# "provider": "sagemaker" if selected_task in AUTOTRAIN_MACHINE.keys() else "ovh",
|
| 583 |
+
# "instance_type": AUTOTRAIN_MACHINE[selected_task]
|
| 584 |
+
# if selected_task in AUTOTRAIN_MACHINE.keys()
|
| 585 |
+
# else "p3",
|
| 586 |
+
# "max_runtime_seconds": 172800,
|
| 587 |
+
# "num_instances": 1,
|
| 588 |
+
# "disk_size_gb": 200,
|
| 589 |
+
# },
|
| 590 |
+
# "evaluation": {
|
| 591 |
+
# "metrics": selected_metrics,
|
| 592 |
+
# "models": selected_models,
|
| 593 |
+
# "hf_username": hf_username,
|
| 594 |
+
# },
|
| 595 |
+
# },
|
| 596 |
+
# }
|
| 597 |
+
# print(f"INFO -- Payload: {project_payload}")
|
| 598 |
+
# project_json_resp = http_post(
|
| 599 |
+
# path="/projects/create",
|
| 600 |
+
# payload=project_payload,
|
| 601 |
+
# token=HF_TOKEN,
|
| 602 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
| 603 |
+
# ).json()
|
| 604 |
+
# print(f"INFO -- Project creation response: {project_json_resp}")
|
| 605 |
+
|
| 606 |
+
# if project_json_resp["created"]:
|
| 607 |
+
# data_payload = {
|
| 608 |
+
# "split": 4, # use "auto" split choice in AutoTrain
|
| 609 |
+
# "col_mapping": col_mapping,
|
| 610 |
+
# "load_config": {"max_size_bytes": 0, "shuffle": False},
|
| 611 |
+
# "dataset_id": selected_dataset,
|
| 612 |
+
# "dataset_config": selected_config,
|
| 613 |
+
# "dataset_split": selected_split,
|
| 614 |
+
# }
|
| 615 |
+
# data_json_resp = http_post(
|
| 616 |
+
# path=f"/projects/{project_json_resp['id']}/data/dataset",
|
| 617 |
+
# payload=data_payload,
|
| 618 |
+
# token=HF_TOKEN,
|
| 619 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
| 620 |
+
# ).json()
|
| 621 |
+
# print(f"INFO -- Dataset creation response: {data_json_resp}")
|
| 622 |
+
# if data_json_resp["download_status"] == 1:
|
| 623 |
+
# train_json_resp = http_post(
|
| 624 |
+
# path=f"/projects/{project_json_resp['id']}/data/start_processing",
|
| 625 |
+
# token=HF_TOKEN,
|
| 626 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
| 627 |
+
# ).json()
|
| 628 |
+
# # For local development we process and approve projects on-the-fly
|
| 629 |
+
# if "localhost" in AUTOTRAIN_BACKEND_API:
|
| 630 |
+
# with st.spinner("β³ Waiting for data processing to complete ..."):
|
| 631 |
+
# is_data_processing_success = False
|
| 632 |
+
# while is_data_processing_success is not True:
|
| 633 |
+
# project_status = http_get(
|
| 634 |
+
# path=f"/projects/{project_json_resp['id']}",
|
| 635 |
+
# token=HF_TOKEN,
|
| 636 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
| 637 |
+
# ).json()
|
| 638 |
+
# if project_status["status"] == 3:
|
| 639 |
+
# is_data_processing_success = True
|
| 640 |
+
# time.sleep(10)
|
| 641 |
+
|
| 642 |
+
# # Approve training job
|
| 643 |
+
# train_job_resp = http_post(
|
| 644 |
+
# path=f"/projects/{project_json_resp['id']}/start_training",
|
| 645 |
+
# token=HF_TOKEN,
|
| 646 |
+
# domain=AUTOTRAIN_BACKEND_API,
|
| 647 |
+
# ).json()
|
| 648 |
+
# st.success("β
Data processing and project approval complete - go forth and evaluate!")
|
| 649 |
+
# else:
|
| 650 |
+
# # Prod/staging submissions are evaluated in a cron job via run_evaluation_jobs.py
|
| 651 |
+
# print(f"INFO -- AutoTrain job response: {train_json_resp}")
|
| 652 |
+
# if train_json_resp["success"]:
|
| 653 |
+
# train_eval_index = {
|
| 654 |
+
# "train-eval-index": [
|
| 655 |
+
# {
|
| 656 |
+
# "config": selected_config,
|
| 657 |
+
# "task": AUTOTRAIN_TASK_TO_HUB_TASK[selected_task],
|
| 658 |
+
# "task_id": selected_task,
|
| 659 |
+
# "splits": {"eval_split": selected_split},
|
| 660 |
+
# "col_mapping": col_mapping,
|
| 661 |
+
# }
|
| 662 |
+
# ]
|
| 663 |
+
# }
|
| 664 |
+
# selected_metadata = yaml.dump(train_eval_index, sort_keys=False)
|
| 665 |
+
# dataset_card_url = get_dataset_card_url(selected_dataset)
|
| 666 |
+
# st.success("β
Successfully submitted evaluation job!")
|
| 667 |
+
# st.markdown(
|
| 668 |
+
# f"""
|
| 669 |
+
# Evaluation can take up to 1 hour to complete, so grab a βοΈ or π΅ while you wait:
|
| 670 |
+
|
| 671 |
+
# * π A [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) with the evaluation results will be opened for each model you selected. Check your email for notifications.
|
| 672 |
+
# * π Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) to view the results from your submission once the Hub pull request is merged.
|
| 673 |
+
# * π₯± Tired of configuring evaluations? Add the following metadata to the [dataset card]({dataset_card_url}) to enable 1-click evaluations:
|
| 674 |
+
# """ # noqa
|
| 675 |
+
# )
|
| 676 |
+
# st.markdown(
|
| 677 |
+
# f"""
|
| 678 |
+
# ```yaml
|
| 679 |
+
# {selected_metadata}
|
| 680 |
+
# """
|
| 681 |
+
# )
|
| 682 |
+
# print("INFO -- Pushing evaluation job logs to the Hub")
|
| 683 |
+
# evaluation_log = {}
|
| 684 |
+
# evaluation_log["project_id"] = project_json_resp["id"]
|
| 685 |
+
# evaluation_log["autotrain_env"] = (
|
| 686 |
+
# "staging" if "staging" in AUTOTRAIN_BACKEND_API else "prod"
|
| 687 |
+
# )
|
| 688 |
+
# evaluation_log["payload"] = project_payload
|
| 689 |
+
# evaluation_log["project_creation_response"] = project_json_resp
|
| 690 |
+
# evaluation_log["dataset_creation_response"] = data_json_resp
|
| 691 |
+
# evaluation_log["autotrain_job_response"] = train_json_resp
|
| 692 |
+
# commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
|
| 693 |
+
# else:
|
| 694 |
+
# st.error("π Oh no, there was an error submitting your evaluation job!")
|
| 695 |
+
# else:
|
| 696 |
+
# st.warning("β οΈ No models left to evaluate! Please select other models and try again.")
|