Spaces:
Runtime error
Runtime error
Pin supported metrics and tweak info
Browse files- app.py +59 -51
- evaluation.py +3 -3
- requirements.txt +0 -2
- utils.py +44 -1
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import inspect
|
| 2 |
import os
|
| 3 |
import uuid
|
| 4 |
from pathlib import Path
|
|
@@ -7,9 +6,7 @@ import pandas as pd
|
|
| 7 |
import streamlit as st
|
| 8 |
from datasets import get_dataset_config_names
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
-
from
|
| 11 |
-
from huggingface_hub import list_datasets, list_metrics
|
| 12 |
-
from tqdm import tqdm
|
| 13 |
|
| 14 |
from evaluation import filter_evaluated_models
|
| 15 |
from utils import (
|
|
@@ -57,42 +54,53 @@ TASK_TO_DEFAULT_METRICS = {
|
|
| 57 |
|
| 58 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
|
| 98 |
#######
|
|
@@ -101,12 +109,13 @@ supported_metrics = get_supported_metrics()
|
|
| 101 |
st.title("Evaluation on the Hub")
|
| 102 |
st.markdown(
|
| 103 |
"""
|
| 104 |
-
Welcome to Hugging Face's automatic model evaluator
|
| 105 |
-
|
|
|
|
| 106 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
| 107 |
-
across a wide variety of datasets on the
|
| 108 |
-
configuration below. The results of your
|
| 109 |
-
[public
|
| 110 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
| 111 |
"""
|
| 112 |
)
|
|
@@ -363,11 +372,10 @@ with st.expander("Advanced configuration"):
|
|
| 363 |
st.markdown(html_string, unsafe_allow_html=True)
|
| 364 |
selected_metrics = st.multiselect(
|
| 365 |
"(Optional) Select additional metrics",
|
| 366 |
-
list(set(
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
Check out the [available metrics](https://huggingface.co/metrics) for more details."""
|
| 371 |
)
|
| 372 |
|
| 373 |
with st.form(key="form"):
|
|
@@ -375,7 +383,7 @@ with st.form(key="form"):
|
|
| 375 |
selected_models = st.multiselect(
|
| 376 |
"Select the models you wish to evaluate",
|
| 377 |
compatible_models,
|
| 378 |
-
help="""Don't see your model in this list? Add the dataset and task it was trained on to the \
|
| 379 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
| 380 |
)
|
| 381 |
print("INFO -- Selected models before filter:", selected_models)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import uuid
|
| 3 |
from pathlib import Path
|
|
|
|
| 6 |
import streamlit as st
|
| 7 |
from datasets import get_dataset_config_names
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
+
from huggingface_hub import list_datasets
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from evaluation import filter_evaluated_models
|
| 12 |
from utils import (
|
|
|
|
| 54 |
|
| 55 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
| 56 |
|
| 57 |
+
# Extracted from utils.get_supported_metrics
|
| 58 |
+
# Hardcoded for now due to speed / caching constraints
|
| 59 |
+
SUPPORTED_METRICS = [
|
| 60 |
+
"accuracy",
|
| 61 |
+
"bertscore",
|
| 62 |
+
"bleu",
|
| 63 |
+
"cer",
|
| 64 |
+
"chrf",
|
| 65 |
+
"code_eval",
|
| 66 |
+
"comet",
|
| 67 |
+
"competition_math",
|
| 68 |
+
"coval",
|
| 69 |
+
"cuad",
|
| 70 |
+
"exact_match",
|
| 71 |
+
"f1",
|
| 72 |
+
"frugalscore",
|
| 73 |
+
"google_bleu",
|
| 74 |
+
"mae",
|
| 75 |
+
"mahalanobis",
|
| 76 |
+
"matthews_correlation",
|
| 77 |
+
"mean_iou",
|
| 78 |
+
"meteor",
|
| 79 |
+
"mse",
|
| 80 |
+
"pearsonr",
|
| 81 |
+
"perplexity",
|
| 82 |
+
"precision",
|
| 83 |
+
"recall",
|
| 84 |
+
"roc_auc",
|
| 85 |
+
"rouge",
|
| 86 |
+
"sacrebleu",
|
| 87 |
+
"sari",
|
| 88 |
+
"seqeval",
|
| 89 |
+
"spearmanr",
|
| 90 |
+
"squad",
|
| 91 |
+
"squad_v2",
|
| 92 |
+
"ter",
|
| 93 |
+
"trec_eval",
|
| 94 |
+
"wer",
|
| 95 |
+
"wiki_split",
|
| 96 |
+
"xnli",
|
| 97 |
+
"angelina-wang/directional_bias_amplification",
|
| 98 |
+
"jordyvl/ece",
|
| 99 |
+
"lvwerra/ai4code",
|
| 100 |
+
"lvwerra/amex",
|
| 101 |
+
"lvwerra/test",
|
| 102 |
+
"lvwerra/test_metric",
|
| 103 |
+
]
|
| 104 |
|
| 105 |
|
| 106 |
#######
|
|
|
|
| 109 |
st.title("Evaluation on the Hub")
|
| 110 |
st.markdown(
|
| 111 |
"""
|
| 112 |
+
Welcome to Hugging Face's automatic model evaluator π!
|
| 113 |
+
|
| 114 |
+
This application allows you to evaluate π€ Transformers
|
| 115 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
| 116 |
+
across a wide variety of [datasets](https://huggingface.co/datasets) on the
|
| 117 |
+
Hub. Please select the dataset and configuration below. The results of your
|
| 118 |
+
evaluation will be displayed on the [public
|
| 119 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
| 120 |
"""
|
| 121 |
)
|
|
|
|
| 372 |
st.markdown(html_string, unsafe_allow_html=True)
|
| 373 |
selected_metrics = st.multiselect(
|
| 374 |
"(Optional) Select additional metrics",
|
| 375 |
+
sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
|
| 376 |
+
help="""User-selected metrics will be computed with their default arguments. \
|
| 377 |
+
For example, `f1` will report results for binary labels. \
|
| 378 |
+
Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
|
|
|
|
| 379 |
)
|
| 380 |
|
| 381 |
with st.form(key="form"):
|
|
|
|
| 383 |
selected_models = st.multiselect(
|
| 384 |
"Select the models you wish to evaluate",
|
| 385 |
compatible_models,
|
| 386 |
+
help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
|
| 387 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
| 388 |
)
|
| 389 |
print("INFO -- Selected models before filter:", selected_models)
|
evaluation.py
CHANGED
|
@@ -42,8 +42,8 @@ def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_
|
|
| 42 |
dataset_split=dataset_split,
|
| 43 |
)
|
| 44 |
candidate_id = hash(evaluation_info)
|
| 45 |
-
if candidate_id in evaluation_ids:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
return models
|
|
|
|
| 42 |
dataset_split=dataset_split,
|
| 43 |
)
|
| 44 |
candidate_id = hash(evaluation_info)
|
| 45 |
+
# if candidate_id in evaluation_ids:
|
| 46 |
+
# st.info(f"Model `{model}` has already been evaluated on this configuration. Skipping evaluation...")
|
| 47 |
+
# models.pop(idx)
|
| 48 |
|
| 49 |
return models
|
requirements.txt
CHANGED
|
@@ -7,7 +7,5 @@ jsonlines
|
|
| 7 |
# Dataset specific deps
|
| 8 |
py7zr<0.19
|
| 9 |
openpyxl<3.1
|
| 10 |
-
# Metric specific deps
|
| 11 |
-
scikit-learn<1.2
|
| 12 |
# Dirty bug from Google
|
| 13 |
protobuf<=3.20.1
|
|
|
|
| 7 |
# Dataset specific deps
|
| 8 |
py7zr<0.19
|
| 9 |
openpyxl<3.1
|
|
|
|
|
|
|
| 10 |
# Dirty bug from Google
|
| 11 |
protobuf<=3.20.1
|
utils.py
CHANGED
|
@@ -1,8 +1,12 @@
|
|
|
|
|
| 1 |
from typing import Dict, List, Union
|
| 2 |
|
| 3 |
import jsonlines
|
| 4 |
import requests
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 8 |
"binary_classification": "text-classification",
|
|
@@ -128,3 +132,42 @@ def commit_evaluation_log(evaluation_log, hf_access_token=None):
|
|
| 128 |
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
|
| 129 |
)
|
| 130 |
print("INFO -- Pushed evaluation logs to the Hub")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
from typing import Dict, List, Union
|
| 3 |
|
| 4 |
import jsonlines
|
| 5 |
import requests
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from evaluate import load
|
| 8 |
+
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
|
| 11 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 12 |
"binary_classification": "text-classification",
|
|
|
|
| 132 |
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
|
| 133 |
)
|
| 134 |
print("INFO -- Pushed evaluation logs to the Hub")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
@st.experimental_memo
|
| 138 |
+
def get_supported_metrics():
|
| 139 |
+
"""Helper function to get all metrics compatible with evaluation service.
|
| 140 |
+
|
| 141 |
+
Requires all metric dependencies installed in the same environment, so wait until
|
| 142 |
+
https://github.com/huggingface/evaluate/issues/138 is resolved before using this.
|
| 143 |
+
"""
|
| 144 |
+
metrics = [metric.id for metric in list_metrics()]
|
| 145 |
+
supported_metrics = []
|
| 146 |
+
for metric in tqdm(metrics):
|
| 147 |
+
# TODO: this currently requires all metric dependencies to be installed
|
| 148 |
+
# in the same environment. Refactor to avoid needing to actually load
|
| 149 |
+
# the metric.
|
| 150 |
+
try:
|
| 151 |
+
print(f"INFO -- Attempting to load metric: {metric}")
|
| 152 |
+
metric_func = load(metric)
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print(e)
|
| 155 |
+
print("WARNING -- Skipping the following metric, which cannot load:", metric)
|
| 156 |
+
continue
|
| 157 |
+
|
| 158 |
+
argspec = inspect.getfullargspec(metric_func.compute)
|
| 159 |
+
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
|
| 160 |
+
# We require that "references" and "predictions" are arguments
|
| 161 |
+
# to the metric function. We also require that the other arguments
|
| 162 |
+
# besides "references" and "predictions" have defaults and so do not
|
| 163 |
+
# need to be specified explicitly.
|
| 164 |
+
defaults = True
|
| 165 |
+
for key, value in argspec.kwonlydefaults.items():
|
| 166 |
+
if key not in ("references", "predictions"):
|
| 167 |
+
if value is None:
|
| 168 |
+
defaults = False
|
| 169 |
+
break
|
| 170 |
+
|
| 171 |
+
if defaults:
|
| 172 |
+
supported_metrics.append(metric)
|
| 173 |
+
return supported_metrics
|