File size: 4,761 Bytes
6055912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3

import argparse
import os
import sys
from pathlib import Path

sys.path.append(str(Path(__file__).parent))

import fev
import pandas as pd

from src.utils import format_leaderboard

# Constants from the main app
BASELINE_MODEL = "Seasonal Naive"
LEAKAGE_IMPUTATION_MODEL = "Chronos-Bolt"
SORT_COL = "win_rate"
N_RESAMPLES_FOR_CI = 1000
TOP_K_MODELS_TO_PLOT = 15
AVAILABLE_METRICS = ["SQL", "MASE", "WQL", "WAPE"]


def load_summaries(path="."):
    csv_files = list(Path(path).glob("*.csv"))
    if not csv_files:
        raise FileNotFoundError(f"No CSV files found in {path}")
    dfs = [pd.read_csv(file) for file in csv_files]
    return pd.concat(dfs, ignore_index=True)


def compute_leaderboard(summaries: pd.DataFrame, metric_name: str) -> pd.DataFrame:
    lb = fev.analysis.leaderboard(
        summaries=summaries,
        metric_column=metric_name,
        missing_strategy="impute",
        baseline_model=BASELINE_MODEL,
        leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
    )
    lb = lb.astype("float64").reset_index()

    lb["skill_score"] = lb["skill_score"] * 100
    lb["win_rate"] = lb["win_rate"] * 100
    lb["num_failures"] = lb["num_failures"] / summaries["task_name"].nunique() * 100
    return lb


def compute_pairwise(summaries: pd.DataFrame, metric_name: str, included_models: list[str]) -> pd.DataFrame:
    if BASELINE_MODEL not in included_models:
        included_models = included_models + [BASELINE_MODEL]

    return (
        fev.analysis.pairwise_comparison(
            summaries,
            included_models=included_models,
            metric_column=metric_name,
            baseline_model=BASELINE_MODEL,
            missing_strategy="impute",
            n_resamples=N_RESAMPLES_FOR_CI,
            leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
        )
        .round(3)
        .reset_index()
    )


def compute_pivot_table(summaries: pd.DataFrame, metric_name: str) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
    errors = fev.pivot_table(summaries=summaries, metric_column=metric_name, task_columns=["task_name"])
    train_overlap = (
        fev.pivot_table(summaries=summaries, metric_column="trained_on_this_dataset", task_columns=["task_name"])
        .fillna(False)
        .astype(bool)
    )

    is_imputed_baseline = errors.isna()
    is_leakage_imputed = train_overlap

    # Handle imputations
    errors = errors.mask(train_overlap, errors[LEAKAGE_IMPUTATION_MODEL], axis=0)
    for col in errors.columns:
        if col != BASELINE_MODEL:
            errors[col] = errors[col].fillna(errors[BASELINE_MODEL])

    errors = errors[errors.rank(axis=1).mean().sort_values().index]
    is_imputed_baseline = is_imputed_baseline[errors.columns]
    is_leakage_imputed = is_leakage_imputed[errors.columns]

    errors.index.rename("Task name", inplace=True)
    is_imputed_baseline.index.rename("Task name", inplace=True)
    is_leakage_imputed.index.rename("Task name", inplace=True)

    return errors.reset_index(), is_imputed_baseline.reset_index(), is_leakage_imputed.reset_index()


def main():
    parser = argparse.ArgumentParser(description="Generate leaderboard tables from CSV summaries")
    parser.add_argument("-s", "--summaries-path", default=".", help="Path to directory containing CSV files")
    args = parser.parse_args()

    # Create tables directory
    tables_dir = Path("tables")
    tables_dir.mkdir(exist_ok=True)

    print("Loading summaries...")
    summaries = load_summaries(args.summaries_path)

    for metric in AVAILABLE_METRICS:
        print(f"Processing {metric}...")

        # Compute leaderboard
        leaderboard_df = compute_leaderboard(summaries, metric)
        leaderboard_df.to_csv(tables_dir / f"leaderboard_{metric}.csv", index=False)

        # Get top models for pairwise comparison
        top_k_models = (
            leaderboard_df.sort_values(by=SORT_COL, ascending=False).head(TOP_K_MODELS_TO_PLOT)["model_name"].tolist()
        )

        # Compute pairwise comparison
        pairwise_df = compute_pairwise(summaries, metric, top_k_models)
        pairwise_df.to_csv(tables_dir / f"pairwise_{metric}.csv", index=False)

        # Compute pivot table
        pivot_df, baseline_imputed, leakage_imputed = compute_pivot_table(summaries, metric)
        pivot_df.to_csv(tables_dir / f"pivot_{metric}.csv", index=False)
        baseline_imputed.to_csv(tables_dir / f"pivot_{metric}_baseline_imputed.csv", index=False)
        leakage_imputed.to_csv(tables_dir / f"pivot_{metric}_leakage_imputed.csv", index=False)

        print(f"  Saved: leaderboard_{metric}.csv, pairwise_{metric}.csv, pivot_{metric}.csv")

    print(f"All tables saved to {tables_dir}/")


if __name__ == "__main__":
    main()