feat(dataops): Proactively split large tiles in auto_split_upscale to prevent CUDA OOM errors.
Browse files- utils/dataops.py +91 -29
utils/dataops.py
CHANGED
|
@@ -37,70 +37,132 @@ def auto_split_upscale(
|
|
| 37 |
upscale_function,
|
| 38 |
scale: int = 4,
|
| 39 |
overlap: int = 32,
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
current_depth: int = 1,
|
| 42 |
current_tile: int = 1, # Tracks the current tile being processed
|
| 43 |
total_tiles: int = 1, # Total number of tiles at this depth level
|
| 44 |
):
|
| 45 |
-
#
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
print(f"auto_split_upscale depth: {current_depth}", end=" ", flush=True)
|
| 49 |
result, _ = upscale_function(lr_img, scale)
|
|
|
|
| 50 |
print(f"progress: {current_tile}/{total_tiles}")
|
|
|
|
| 51 |
return result, current_depth
|
| 52 |
except RuntimeError as e:
|
| 53 |
# Check to see if its actually the CUDA out of memory error
|
| 54 |
if "CUDA" in str(e):
|
|
|
|
| 55 |
print("RuntimeError: CUDA out of memory...")
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
else:
|
|
|
|
| 58 |
raise RuntimeError(e)
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
#
|
|
|
|
|
|
|
|
|
|
| 66 |
top_left = lr_img[: input_h // 2 + overlap, : input_w // 2 + overlap, :]
|
| 67 |
top_right = lr_img[: input_h // 2 + overlap, input_w // 2 - overlap :, :]
|
| 68 |
bottom_left = lr_img[input_h // 2 - overlap :, : input_w // 2 + overlap, :]
|
| 69 |
bottom_right = lr_img[input_h // 2 - overlap :, input_w // 2 - overlap :, :]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
|
|
|
| 80 |
top_right_rlt, _ = auto_split_upscale(
|
| 81 |
-
top_right, upscale_function, scale=scale, overlap=overlap,
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
bottom_left_rlt, _ = auto_split_upscale(
|
| 85 |
-
bottom_left, upscale_function, scale=scale, overlap=overlap,
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
bottom_right_rlt, _ = auto_split_upscale(
|
| 89 |
-
bottom_right, upscale_function, scale=scale, overlap=overlap,
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
-
#
|
|
|
|
| 94 |
out_h = input_h * scale
|
| 95 |
out_w = input_w * scale
|
| 96 |
|
| 97 |
# Create an empty output image
|
| 98 |
output_img = np.zeros((out_h, out_w, input_c), np.uint8)
|
| 99 |
-
|
| 100 |
-
# Fill the output image
|
| 101 |
output_img[: out_h // 2, : out_w // 2, :] = top_left_rlt[: out_h // 2, : out_w // 2, :]
|
| 102 |
output_img[: out_h // 2, -out_w // 2 :, :] = top_right_rlt[: out_h // 2, -out_w // 2 :, :]
|
| 103 |
output_img[-out_h // 2 :, : out_w // 2, :] = bottom_left_rlt[-out_h // 2 :, : out_w // 2, :]
|
| 104 |
output_img[-out_h // 2 :, -out_w // 2 :, :] = bottom_right_rlt[-out_h // 2 :, -out_w // 2 :, :]
|
| 105 |
|
| 106 |
-
return output_img,
|
|
|
|
| 37 |
upscale_function,
|
| 38 |
scale: int = 4,
|
| 39 |
overlap: int = 32,
|
| 40 |
+
# A heuristic to proactively split tiles that are too large, avoiding a CUDA error.
|
| 41 |
+
# The default (2048*2048) is a conservative value for moderate VRAM (e.g., 8-12GB).
|
| 42 |
+
# Adjust this based on your GPU and model's memory footprint.
|
| 43 |
+
max_tile_pixels: int = 4194304, # Default: 2048 * 2048 pixels
|
| 44 |
+
# Internal parameters for recursion state. Do not set these manually.
|
| 45 |
+
known_max_depth: int = None,
|
| 46 |
current_depth: int = 1,
|
| 47 |
current_tile: int = 1, # Tracks the current tile being processed
|
| 48 |
total_tiles: int = 1, # Total number of tiles at this depth level
|
| 49 |
):
|
| 50 |
+
# --- Step 0: Handle CPU-only environment ---
|
| 51 |
+
# The entire splitting logic is designed to overcome GPU VRAM limitations.
|
| 52 |
+
# If no CUDA-enabled GPU is present, this logic is unnecessary and adds overhead.
|
| 53 |
+
# Therefore, we process the image in one go on the CPU.
|
| 54 |
+
if not torch.cuda.is_available():
|
| 55 |
+
# Note: This assumes the image fits into system RAM, which is usually the case.
|
| 56 |
+
result, _ = upscale_function(lr_img, scale)
|
| 57 |
+
# The conceptual depth is 1 since no splitting was performed.
|
| 58 |
+
return result, 1
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
Automatically splits an image into tiles for upscaling to avoid CUDA out-of-memory errors.
|
| 62 |
+
It uses a combination of a pixel-count heuristic and reactive error handling to find the
|
| 63 |
+
optimal processing depth, then applies this depth to all subsequent tiles.
|
| 64 |
+
"""
|
| 65 |
+
input_h, input_w, input_c = lr_img.shape
|
| 66 |
+
|
| 67 |
+
# --- Step 1: Decide if we should ATTEMPT to upscale or MUST split ---
|
| 68 |
+
# We must split if:
|
| 69 |
+
# A) The tile is too large based on our heuristic, and we don't have a known working depth yet.
|
| 70 |
+
# B) We have a known working depth from a sibling tile, but we haven't recursed deep enough to reach it yet.
|
| 71 |
+
must_split = (known_max_depth is None and (input_h * input_w) > max_tile_pixels) or \
|
| 72 |
+
(known_max_depth is not None and current_depth < known_max_depth)
|
| 73 |
+
|
| 74 |
+
if not must_split:
|
| 75 |
+
# If we are not forced to split, let's try to upscale the current tile.
|
| 76 |
try:
|
| 77 |
print(f"auto_split_upscale depth: {current_depth}", end=" ", flush=True)
|
| 78 |
result, _ = upscale_function(lr_img, scale)
|
| 79 |
+
# SUCCESS! The upscale worked at this depth.
|
| 80 |
print(f"progress: {current_tile}/{total_tiles}")
|
| 81 |
+
# Return the result and the current depth, which is now the "known_max_depth".
|
| 82 |
return result, current_depth
|
| 83 |
except RuntimeError as e:
|
| 84 |
# Check to see if its actually the CUDA out of memory error
|
| 85 |
if "CUDA" in str(e):
|
| 86 |
+
# OOM ERROR. Our heuristic was too optimistic. This depth is not viable.
|
| 87 |
print("RuntimeError: CUDA out of memory...")
|
| 88 |
+
# Clean up VRAM and proceed to the splitting logic below.
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
+
gc.collect()
|
| 91 |
else:
|
| 92 |
+
# A different runtime error occurred, so we should not suppress it.
|
| 93 |
raise RuntimeError(e)
|
| 94 |
+
# If an OOM error occurred, flow continues to the splitting section.
|
| 95 |
+
|
| 96 |
+
# --- Step 2: If we reached here, we MUST split the image ---
|
| 97 |
+
|
| 98 |
+
# Safety break to prevent infinite recursion if something goes wrong.
|
| 99 |
+
if current_depth > 10:
|
| 100 |
+
raise RuntimeError("Maximum recursion depth exceeded. Check max_tile_pixels or model requirements.")
|
| 101 |
+
|
| 102 |
+
# Prepare parameters for the next level of recursion.
|
| 103 |
+
next_depth = current_depth + 1
|
| 104 |
+
new_total_tiles = total_tiles * 4
|
| 105 |
+
base_tile_for_next_level = (current_tile - 1) * 4
|
| 106 |
|
| 107 |
+
# Announce the split only when it's happening.
|
| 108 |
+
print(f"Splitting tile at depth {current_depth} into 4 tiles for depth {next_depth}.")
|
| 109 |
+
|
| 110 |
+
# Split the image into 4 quadrants with overlap.
|
| 111 |
top_left = lr_img[: input_h // 2 + overlap, : input_w // 2 + overlap, :]
|
| 112 |
top_right = lr_img[: input_h // 2 + overlap, input_w // 2 - overlap :, :]
|
| 113 |
bottom_left = lr_img[input_h // 2 - overlap :, : input_w // 2 + overlap, :]
|
| 114 |
bottom_right = lr_img[input_h // 2 - overlap :, input_w // 2 - overlap :, :]
|
| 115 |
+
|
| 116 |
+
# Recursively process each quadrant.
|
| 117 |
+
# Process the first quadrant to discover the safe depth.
|
| 118 |
+
# The first quadrant (top_left) will "discover" the correct processing depth.
|
| 119 |
+
# Pass the current `known_max_depth` down.
|
| 120 |
+
top_left_rlt, discovered_depth = auto_split_upscale(
|
| 121 |
+
top_left, upscale_function, scale=scale, overlap=overlap,
|
| 122 |
+
max_tile_pixels=max_tile_pixels,
|
| 123 |
+
known_max_depth=known_max_depth,
|
| 124 |
+
current_depth=next_depth,
|
| 125 |
+
current_tile=base_tile_for_next_level + 1,
|
| 126 |
+
total_tiles=new_total_tiles,
|
| 127 |
)
|
| 128 |
+
# Once the depth is discovered, pass it to the other quadrants to avoid redundant checks.
|
| 129 |
top_right_rlt, _ = auto_split_upscale(
|
| 130 |
+
top_right, upscale_function, scale=scale, overlap=overlap,
|
| 131 |
+
max_tile_pixels=max_tile_pixels,
|
| 132 |
+
known_max_depth=discovered_depth,
|
| 133 |
+
current_depth=next_depth,
|
| 134 |
+
current_tile=base_tile_for_next_level + 2,
|
| 135 |
+
total_tiles=new_total_tiles,
|
| 136 |
)
|
| 137 |
bottom_left_rlt, _ = auto_split_upscale(
|
| 138 |
+
bottom_left, upscale_function, scale=scale, overlap=overlap,
|
| 139 |
+
max_tile_pixels=max_tile_pixels,
|
| 140 |
+
known_max_depth=discovered_depth,
|
| 141 |
+
current_depth=next_depth,
|
| 142 |
+
current_tile=base_tile_for_next_level + 3,
|
| 143 |
+
total_tiles=new_total_tiles,
|
| 144 |
)
|
| 145 |
bottom_right_rlt, _ = auto_split_upscale(
|
| 146 |
+
bottom_right, upscale_function, scale=scale, overlap=overlap,
|
| 147 |
+
max_tile_pixels=max_tile_pixels,
|
| 148 |
+
known_max_depth=discovered_depth,
|
| 149 |
+
current_depth=next_depth,
|
| 150 |
+
current_tile=base_tile_for_next_level + 4,
|
| 151 |
+
total_tiles=new_total_tiles,
|
| 152 |
)
|
| 153 |
|
| 154 |
+
# --- Step 3: Stitch the results back together ---
|
| 155 |
+
# Reassemble the upscaled quadrants into a single image.
|
| 156 |
out_h = input_h * scale
|
| 157 |
out_w = input_w * scale
|
| 158 |
|
| 159 |
# Create an empty output image
|
| 160 |
output_img = np.zeros((out_h, out_w, input_c), np.uint8)
|
| 161 |
+
|
| 162 |
+
# Fill the output image, removing the overlap regions to prevent artifacts
|
| 163 |
output_img[: out_h // 2, : out_w // 2, :] = top_left_rlt[: out_h // 2, : out_w // 2, :]
|
| 164 |
output_img[: out_h // 2, -out_w // 2 :, :] = top_right_rlt[: out_h // 2, -out_w // 2 :, :]
|
| 165 |
output_img[-out_h // 2 :, : out_w // 2, :] = bottom_left_rlt[-out_h // 2 :, : out_w // 2, :]
|
| 166 |
output_img[-out_h // 2 :, -out_w // 2 :, :] = bottom_right_rlt[-out_h // 2 :, -out_w // 2 :, :]
|
| 167 |
|
| 168 |
+
return output_img, discovered_depth
|