Spaces:
Build error
Build error
| import os | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| MODEL_NAME = "openai/whisper-large-v3" | |
| BATCH_SIZE = 8 | |
| FILE_LIMIT_MB = 1000 | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| def respond_to_question(transcript, question): | |
| # Optionally, use OpenAI API to generate a response to the user's question | |
| # based on the transcript | |
| response = "" | |
| # Replace this with your OpenAI API key | |
| openai.api_key = os.environ["OPENAI_API_KEY"] | |
| response = openai.Completion.create( | |
| engine="text-davinci-002", | |
| prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:", | |
| temperature=0.3, | |
| max_tokens=60, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0 | |
| ).choices[0].text | |
| return response | |
| with gr.Blocks() as transcriberUI: | |
| gr.Markdown( | |
| """ | |
| # Ola! | |
| Clicar no botao abaixo para selecionar o Audio a ser transcrito! | |
| Ambiente Demo disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3 | |
| """ | |
| ) | |
| inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"]) | |
| transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True) | |
| ask_question = gr.Textbox(label="Ask a question", visible=True) | |
| response_output = gr.Textbox(label="Response", visible=True) | |
| submit_question = gr.Button("Submit question", visible=True) | |
| def audio_transcribe(inputs): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"] | |
| ask_question.visible = True | |
| submit_question.visible = True | |
| return text | |
| def ask_question_callback(transcribe_output,ask_question): | |
| if ask_question: | |
| response = respond_to_question(transcript_output, ask_question) | |
| response_output.visible = True | |
| response_output.value = response | |
| else: | |
| response_output.value = "No question asked" | |
| return response_output | |
| inp.upload(audio_transcribe, inputs=inp, outputs=transcribe) | |
| submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question]) | |
| transcriberUI.queue().launch() |