Spaces:
Build error
Build error
| import os | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| MODEL_NAME = "openai/whisper-large-v3" | |
| BATCH_SIZE = 8 | |
| FILE_LIMIT_MB = 1000 | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| def respond_to_question_llama(transcript, question): | |
| from huggingface_hub import InferenceClient | |
| client = InferenceClient( | |
| "meta-llama/Meta-Llama-3.1-70B-Instruct", | |
| token=os.environ["HUGGINGFACEHUB_API_TOKEN"], | |
| ) | |
| response = client.chat_completion( | |
| messages=[{"role": "user", "content": f"Transcript: {transcript}\n\nUser: {question}"}], | |
| max_tokens=4096, | |
| ).choices[0].message.content | |
| return response | |
| def audio_transcribe(inputs): | |
| status=True | |
| text="Arquivo de audio nao carregado!" | |
| status=False | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") | |
| else: | |
| text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)['text'] | |
| status = True | |
| return [text, gr.Textbox(visible=status),gr.Textbox(visible=status),gr.Textbox(visible=status)] | |
| def hidden_ask_question(): | |
| return [gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Textbox(visible=False)] | |
| with gr.Blocks() as transcriberUI: | |
| gr.Markdown( | |
| """ | |
| # Ola! | |
| Clique no botao abaixo para selecionar o Audio que deseja conversar! | |
| Ambiente disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3 | |
| """ | |
| ) | |
| inp = gr.Audio(sources="upload", type="filepath", label="Audio file") | |
| transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True) | |
| ask_question = gr.Textbox(label="Ask a question", visible=False) | |
| response_output = gr.Textbox(label="Response", visible=False) | |
| submit_question = gr.Button("Submit question", visible=False) | |
| submit_button = gr.Button("Transcribe to Chat", variant='primary', size='sm') | |
| clear_button = gr.ClearButton([transcribe,response_output,inp, ask_question]) | |
| def ask_question_callback(transcription,question): | |
| if ask_question: | |
| response = respond_to_question_llama(transcription, question) | |
| else: | |
| response = "No question asked" | |
| return response | |
| #inp.upload(audio_transcribe, inputs=inp, outputs=[transcribe,ask_question,submit_question, response_output]) | |
| submit_button.click(audio_transcribe, inputs=inp, outputs=[transcribe,ask_question,submit_question, response_output]) | |
| submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question]) | |
| clear_button.click(hidden_ask_question,outputs=[ask_question,response_output,submit_question]) | |
| transcriberUI.queue().launch() |