Spaces:
Build error
Build error
Update app.py
Browse filesUpdated based on https://huggingface.co/spaces/hf-audio/whisper-large-v3
app.py
CHANGED
|
@@ -1,75 +1,40 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
audio_wav_filename = f"{audio_input_name}.wav"
|
| 9 |
-
audio_input.export(audio_wav_filename, 'wav')
|
| 10 |
-
|
| 11 |
-
return audio_wav_filename
|
| 12 |
|
| 13 |
-
|
| 14 |
-
from transformers import pipeline
|
| 15 |
-
import torch
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
device_id = torch.device('cpu')
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#Mac runtime
|
| 28 |
-
#device_id = "mps"
|
| 29 |
-
#torch_dtype = torch.float16
|
| 30 |
-
flash = False
|
| 31 |
-
ts = False
|
| 32 |
-
|
| 33 |
-
#Try to optimize when CPU and float32
|
| 34 |
-
model_id = "openai/whisper-tiny"
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# Initialize the ASR pipeline
|
| 38 |
-
pipe = pipeline(
|
| 39 |
-
"automatic-speech-recognition",
|
| 40 |
-
model=model_id,
|
| 41 |
-
torch_dtype=torch_dtype,
|
| 42 |
-
device=device_id
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
if device_id == "mps":
|
| 46 |
-
torch.mps.empty_cache()
|
| 47 |
-
elif not flash:
|
| 48 |
-
pipe.model = pipe.model.to_bettertransformer()
|
| 49 |
-
|
| 50 |
-
language = None
|
| 51 |
-
task = "transcribe"
|
| 52 |
-
|
| 53 |
-
json_output = pipe(
|
| 54 |
-
audio_file_wav,
|
| 55 |
-
chunk_length_s=30,
|
| 56 |
-
batch_size=8,
|
| 57 |
-
generate_kwargs={"task": task, "language": language},
|
| 58 |
-
return_timestamps=ts
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
return json_output["text"]
|
| 62 |
|
| 63 |
with gr.Blocks() as transcriberUI:
|
| 64 |
gr.Markdown(
|
| 65 |
"""
|
| 66 |
-
# Ola
|
| 67 |
Clicar no botao abaixo para selecionar o Audio a ser transcrito!
|
| 68 |
-
Ambiente Demo disponivel 24x7. Running on
|
| 69 |
""")
|
| 70 |
-
inp = gr.File(label="Arquivo de Audio", show_label=True, file_count="single", file_types=["
|
| 71 |
transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True)
|
| 72 |
-
inp.upload(
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|
| 75 |
transcriberUI.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 6 |
|
| 7 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
| 8 |
+
BATCH_SIZE = 8
|
| 9 |
+
FILE_LIMIT_MB = 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
pipe = pipeline(
|
| 14 |
+
task="automatic-speech-recognition",
|
| 15 |
+
model=MODEL_NAME,
|
| 16 |
+
chunk_length_s=30,
|
| 17 |
+
device=device,
|
| 18 |
+
)
|
| 19 |
|
| 20 |
+
@spaces.GPU
|
| 21 |
+
def audio_transcribe(inputs, task):
|
| 22 |
+
if inputs is None:
|
| 23 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
|
| 24 |
|
| 25 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 26 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
with gr.Blocks() as transcriberUI:
|
| 29 |
gr.Markdown(
|
| 30 |
"""
|
| 31 |
+
# Ola!
|
| 32 |
Clicar no botao abaixo para selecionar o Audio a ser transcrito!
|
| 33 |
+
Ambiente Demo disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3
|
| 34 |
""")
|
| 35 |
+
inp = gr.File(label="Arquivo de Audio", show_label=True, type="file_path", file_count="single", file_types=["mp3"])
|
| 36 |
transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True)
|
| 37 |
+
inp.upload(audio_transcribe, inp, transcribe)
|
| 38 |
|
| 39 |
if __name__ == "__main__":
|
| 40 |
transcriberUI.launch()
|