Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import JSONResponse | |
| from models.model_wav2vec import Wav2VecIntent | |
| from huggingface_hub import hf_hub_download | |
| import torch | |
| import soundfile as sf | |
| import gradio as gr | |
| import numpy as np | |
| import librosa | |
| app = FastAPI() | |
| # Download model from Hugging Face | |
| MODEL_PATH = hf_hub_download(repo_id="avi292423/speech-intent-recognition-project", filename="wav2vec_best_model.pt") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| label_map = { | |
| "activate_lamp": 0, "activate_lights": 1, "activate_lights_bedroom": 2, "activate_lights_kitchen": 3, | |
| "activate_lights_washroom": 4, "activate_music": 5, "bring_juice": 6, "bring_newspaper": 7, | |
| "bring_shoes": 8, "bring_socks": 9, "change_language_Chinese": 10, "change_language_English": 11, | |
| "change_language_German": 12, "change_language_Korean": 13, "change_language_none": 14, | |
| "deactivate_lamp": 15, "deactivate_lights": 16, "deactivate_lights_bedroom": 17, "deactivate_lights_kitchen": 18, | |
| "deactivate_lights_washroom": 19, "deactivate_music": 20, "decrease_heat": 21, "decrease_heat_bedroom": 22, | |
| "decrease_heat_kitchen": 23, "decrease_heat_washroom": 24, "decrease_volume": 25, "increase_heat": 26, | |
| "increase_heat_bedroom": 27, "increase_heat_kitchen": 28, "increase_heat_washroom": 29, "increase_volume": 30 | |
| } | |
| index_to_label = {v: k for k, v in label_map.items()} | |
| num_classes = 31 | |
| pretrained_model = "facebook/wav2vec2-large" # Use base for less RAM, or keep large if needed | |
| model = Wav2VecIntent(num_classes=num_classes, pretrained_model=pretrained_model).to(device) | |
| state_dict = torch.load(MODEL_PATH, map_location=device) | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| async def predict(file: UploadFile = File(...)): | |
| audio_bytes = await file.read() | |
| with open("temp.wav", "wb") as f: | |
| f.write(audio_bytes) | |
| audio, sample_rate = sf.read("temp.wav") | |
| if sample_rate != 16000: | |
| return JSONResponse({"error": "Audio must have a sample rate of 16kHz."}, status_code=400) | |
| waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| output = model(waveform) | |
| predicted_class = torch.argmax(output, dim=1).item() | |
| predicted_label = index_to_label.get(predicted_class, "Unknown Class") | |
| return {"prediction": predicted_label} | |
| def predict_intent(audio): | |
| if audio is None: | |
| return "No audio provided." | |
| sr, y = audio | |
| if sr != 16000: | |
| # Resample to 16kHz | |
| y = librosa.resample(y.astype(float), orig_sr=sr, target_sr=16000) | |
| sr = 16000 | |
| waveform = torch.tensor(y, dtype=torch.float32).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| output = model(waveform) | |
| predicted_class = torch.argmax(output, dim=1).item() | |
| predicted_label = index_to_label.get(predicted_class, "Unknown Class") | |
| return predicted_label | |
| demo = gr.Interface( | |
| fn=predict_intent, | |
| inputs=gr.Audio(type="numpy", label="Record or Upload Audio (16kHz WAV)"), | |
| outputs=gr.Textbox(label="Predicted Intent"), | |
| title="Speech Intent Recognition", | |
| description="Record or upload a 16kHz WAV audio file to predict the intent." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |