Update app.py
Browse files
app.py
CHANGED
|
@@ -45,7 +45,6 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
| 45 |
temp3["role"] = "user"
|
| 46 |
temp3["content"] = inputs
|
| 47 |
messages.append(temp3)
|
| 48 |
-
#messages
|
| 49 |
payload = {
|
| 50 |
"model": "gpt-3.5-turbo",
|
| 51 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
|
@@ -61,28 +60,19 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
| 61 |
# 4. POST it to OPENAI API
|
| 62 |
history.append(inputs)
|
| 63 |
print(f"payload is - {payload}")
|
| 64 |
-
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
| 65 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
| 66 |
-
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
| 67 |
token_counter = 0
|
| 68 |
partial_words = ""
|
| 69 |
|
| 70 |
# 5. Iterate through response lines and structure readable response
|
| 71 |
-
# TODO - make this parse out markdown so we can have similar interface
|
| 72 |
counter=0
|
| 73 |
for chunk in response.iter_lines():
|
| 74 |
-
#Skipping first chunk
|
| 75 |
if counter == 0:
|
| 76 |
counter+=1
|
| 77 |
continue
|
| 78 |
-
#counter+=1
|
| 79 |
-
# check whether each line is non-empty
|
| 80 |
if chunk.decode() :
|
| 81 |
chunk = chunk.decode()
|
| 82 |
-
# decode each line as response data is in bytes
|
| 83 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
| 84 |
-
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
| 85 |
-
# break
|
| 86 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
| 87 |
if token_counter == 0:
|
| 88 |
history.append(" " + partial_words)
|
|
@@ -90,7 +80,7 @@ def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
|
|
| 90 |
history[-1] = partial_words
|
| 91 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
| 92 |
token_counter+=1
|
| 93 |
-
yield chat, history, chat_counter
|
| 94 |
|
| 95 |
|
| 96 |
def reset_textbox():
|
|
@@ -117,33 +107,25 @@ description = """
|
|
| 117 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
| 118 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
| 119 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
| 120 |
-
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
| 121 |
-
|
| 122 |
"""
|
| 123 |
|
| 124 |
# 6. Use Gradio to pull it all together
|
| 125 |
-
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
| 126 |
-
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
| 127 |
-
|
| 128 |
-
|
| 129 |
gr.HTML(title)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
with gr.Column(elem_id = "col_container"):
|
| 133 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
| 134 |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
|
| 135 |
state = gr.State([]) #s
|
| 136 |
b1 = gr.Button()
|
| 137 |
-
|
| 138 |
with gr.Accordion("Parameters", open=False):
|
| 139 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
| 140 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
| 141 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
| 142 |
|
| 143 |
-
inputs.submit(
|
| 144 |
-
b1.click(
|
| 145 |
b1.click(reset_textbox, [], [inputs])
|
| 146 |
inputs.submit(reset_textbox, [], [inputs])
|
| 147 |
-
|
| 148 |
gr.Markdown(description)
|
| 149 |
-
demo.queue().launch(debug=True)
|
|
|
|
| 45 |
temp3["role"] = "user"
|
| 46 |
temp3["content"] = inputs
|
| 47 |
messages.append(temp3)
|
|
|
|
| 48 |
payload = {
|
| 49 |
"model": "gpt-3.5-turbo",
|
| 50 |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
|
|
|
|
| 60 |
# 4. POST it to OPENAI API
|
| 61 |
history.append(inputs)
|
| 62 |
print(f"payload is - {payload}")
|
|
|
|
| 63 |
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
|
|
|
| 64 |
token_counter = 0
|
| 65 |
partial_words = ""
|
| 66 |
|
| 67 |
# 5. Iterate through response lines and structure readable response
|
|
|
|
| 68 |
counter=0
|
| 69 |
for chunk in response.iter_lines():
|
|
|
|
| 70 |
if counter == 0:
|
| 71 |
counter+=1
|
| 72 |
continue
|
|
|
|
|
|
|
| 73 |
if chunk.decode() :
|
| 74 |
chunk = chunk.decode()
|
|
|
|
| 75 |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
|
|
|
|
|
|
|
| 76 |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
|
| 77 |
if token_counter == 0:
|
| 78 |
history.append(" " + partial_words)
|
|
|
|
| 80 |
history[-1] = partial_words
|
| 81 |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
|
| 82 |
token_counter+=1
|
| 83 |
+
yield chat, history, chat_counter
|
| 84 |
|
| 85 |
|
| 86 |
def reset_textbox():
|
|
|
|
| 107 |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
|
| 108 |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
|
| 109 |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
|
| 110 |
+
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
|
|
|
|
| 111 |
"""
|
| 112 |
|
| 113 |
# 6. Use Gradio to pull it all together
|
| 114 |
+
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
|
|
|
|
|
|
|
|
|
|
| 115 |
gr.HTML(title)
|
|
|
|
|
|
|
| 116 |
with gr.Column(elem_id = "col_container"):
|
| 117 |
chatbot = gr.Chatbot(elem_id='chatbot') #c
|
| 118 |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
|
| 119 |
state = gr.State([]) #s
|
| 120 |
b1 = gr.Button()
|
|
|
|
| 121 |
with gr.Accordion("Parameters", open=False):
|
| 122 |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
|
| 123 |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
|
| 124 |
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
| 125 |
|
| 126 |
+
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
| 127 |
+
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
|
| 128 |
b1.click(reset_textbox, [], [inputs])
|
| 129 |
inputs.submit(reset_textbox, [], [inputs])
|
|
|
|
| 130 |
gr.Markdown(description)
|
| 131 |
+
demo.queue().launch(debug=True)
|