Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import glob
|
| 5 |
+
import base64
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
import csv
|
| 12 |
+
import time
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from typing import Optional, Tuple
|
| 15 |
+
import zipfile
|
| 16 |
+
import math
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import random
|
| 19 |
+
import logging
|
| 20 |
+
|
| 21 |
+
# Set up logging for feedback
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
# Page Configuration with Humor
|
| 26 |
+
st.set_page_config(
|
| 27 |
+
page_title="SFT Tiny Titans π",
|
| 28 |
+
page_icon="π€",
|
| 29 |
+
layout="wide",
|
| 30 |
+
initial_sidebar_state="expanded",
|
| 31 |
+
menu_items={
|
| 32 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
| 33 |
+
'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
| 34 |
+
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! π"
|
| 35 |
+
}
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# [Previous sections like ModelConfig, SFTDataset, ModelBuilder, Utility Functions remain unchanged...]
|
| 39 |
+
|
| 40 |
+
# Cargo Travel Time Tool (Now a Proper smolagents Tool)
|
| 41 |
+
from smolagents import tool
|
| 42 |
+
|
| 43 |
+
@tool
|
| 44 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
| 45 |
+
"""Calculate cargo plane travel time between two coordinates."""
|
| 46 |
+
def to_radians(degrees: float) -> float:
|
| 47 |
+
return degrees * (math.pi / 180)
|
| 48 |
+
lat1, lon1 = map(to_radians, origin_coords)
|
| 49 |
+
lat2, lon2 = map(to_radians, destination_coords)
|
| 50 |
+
EARTH_RADIUS_KM = 6371.0
|
| 51 |
+
dlon = lon2 - lon1
|
| 52 |
+
dlat = lat2 - lat1
|
| 53 |
+
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
| 54 |
+
c = 2 * math.asin(math.sqrt(a))
|
| 55 |
+
distance = EARTH_RADIUS_KM * c
|
| 56 |
+
actual_distance = distance * 1.1
|
| 57 |
+
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
| 58 |
+
return round(flight_time, 2)
|
| 59 |
+
|
| 60 |
+
# Main App
|
| 61 |
+
st.title("SFT Tiny Titans π (Small but Mighty!)")
|
| 62 |
+
|
| 63 |
+
# Sidebar with Galleries (unchanged)
|
| 64 |
+
st.sidebar.header("Galleries & Shenanigans π¨")
|
| 65 |
+
st.sidebar.subheader("Image Gallery πΈ")
|
| 66 |
+
img_files = get_gallery_files(["png", "jpg", "jpeg"])
|
| 67 |
+
if img_files:
|
| 68 |
+
img_cols = st.sidebar.slider("Image Columns πΈ", 1, 5, 3)
|
| 69 |
+
cols = st.sidebar.columns(img_cols)
|
| 70 |
+
for idx, img_file in enumerate(img_files[:img_cols * 2]):
|
| 71 |
+
with cols[idx % img_cols]:
|
| 72 |
+
st.image(Image.open(img_file), caption=f"{img_file} πΌ", use_column_width=True)
|
| 73 |
+
|
| 74 |
+
st.sidebar.subheader("CSV Gallery π")
|
| 75 |
+
csv_files = get_gallery_files(["csv"])
|
| 76 |
+
if csv_files:
|
| 77 |
+
for csv_file in csv_files[:5]:
|
| 78 |
+
st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} π"), unsafe_allow_html=True)
|
| 79 |
+
|
| 80 |
+
st.sidebar.subheader("Model Management ποΈ")
|
| 81 |
+
model_dirs = get_model_files()
|
| 82 |
+
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
| 83 |
+
if selected_model != "None" and st.sidebar.button("Load Model π"):
|
| 84 |
+
if 'builder' not in st.session_state:
|
| 85 |
+
st.session_state['builder'] = ModelBuilder()
|
| 86 |
+
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
|
| 87 |
+
st.session_state['builder'].load_model(selected_model, config)
|
| 88 |
+
st.session_state['model_loaded'] = True
|
| 89 |
+
st.rerun()
|
| 90 |
+
|
| 91 |
+
# Main UI with Tabs (only Tab 4 updated here)
|
| 92 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan π±", "Fine-Tune Titan π§", "Test Titan π§ͺ", "Agentic RAG Party π"])
|
| 93 |
+
|
| 94 |
+
# [Tab 1, Tab 2, Tab 3 remain unchanged...]
|
| 95 |
+
|
| 96 |
+
with tab4:
|
| 97 |
+
st.header("Agentic RAG Party π (Party Like Itβs 2099!)")
|
| 98 |
+
st.write("This demo uses Tiny Titans with Agentic RAG to plan a superhero party, powered by DuckDuckGo retrieval!")
|
| 99 |
+
|
| 100 |
+
if st.button("Run Agentic RAG Demo π"):
|
| 101 |
+
try:
|
| 102 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
|
| 103 |
+
from transformers import AutoModelForCausalLM
|
| 104 |
+
|
| 105 |
+
# Load the model
|
| 106 |
+
with st.spinner("Loading SmolLM-135M... β³ (Titanβs suiting up!)"):
|
| 107 |
+
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
| 108 |
+
st.write("Model loaded! π¦ΈββοΈ (Ready to party!)")
|
| 109 |
+
|
| 110 |
+
# Initialize agent with proper tools
|
| 111 |
+
agent = CodeAgent(
|
| 112 |
+
model=model,
|
| 113 |
+
tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
|
| 114 |
+
additional_authorized_imports=["pandas"],
|
| 115 |
+
planning_interval=5,
|
| 116 |
+
verbosity_level=2,
|
| 117 |
+
max_steps=15,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
task = """
|
| 121 |
+
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Use DuckDuckGo to search for the latest superhero party trends,
|
| 122 |
+
refine results for luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations
|
| 123 |
+
(New York: 40.7128Β° N, 74.0060Β° W; LA: 34.0522Β° N, 118.2437Β° W; London: 51.5074Β° N, 0.1278Β° W) to Wayne Manor.
|
| 124 |
+
Synthesize a plan with at least 6 entries in a pandas dataframe, including locations, travel times, and luxury ideas.
|
| 125 |
+
Add a random superhero catchphrase to each entry for fun!
|
| 126 |
+
"""
|
| 127 |
+
with st.spinner("Planning the ultimate superhero bash... β³ (Calling all caped crusaders!)"):
|
| 128 |
+
result = agent.run(task)
|
| 129 |
+
st.write("Agentic RAG Party Plan:")
|
| 130 |
+
st.write(result)
|
| 131 |
+
st.write("Party on, Wayne! π¦ΈββοΈπ")
|
| 132 |
+
except ImportError:
|
| 133 |
+
st.error("Please install required packages: `pip install smolagents pandas transformers`")
|
| 134 |
+
except TypeError as e:
|
| 135 |
+
st.error(f"Agent setup failed: {str(e)} (Looks like the Titans need a tune-up!)")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")
|