Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import glob
|
| 5 |
+
import base64
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
import csv
|
| 12 |
+
import time
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from typing import Optional
|
| 15 |
+
import zipfile
|
| 16 |
+
|
| 17 |
+
# Page Configuration
|
| 18 |
+
st.set_page_config(
|
| 19 |
+
page_title="SFT Model Builder π",
|
| 20 |
+
page_icon="π€",
|
| 21 |
+
layout="wide",
|
| 22 |
+
initial_sidebar_state="expanded",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Meta class for model configuration
|
| 26 |
+
class ModelMeta(type):
|
| 27 |
+
def __new__(cls, name, bases, attrs):
|
| 28 |
+
attrs['registry'] = {}
|
| 29 |
+
return super().__new__(cls, name, bases, attrs)
|
| 30 |
+
|
| 31 |
+
# Model Configuration Class
|
| 32 |
+
@dataclass
|
| 33 |
+
class ModelConfig(metaclass=ModelMeta):
|
| 34 |
+
name: str
|
| 35 |
+
base_model: str
|
| 36 |
+
size: str
|
| 37 |
+
domain: Optional[str] = None
|
| 38 |
+
|
| 39 |
+
def __init_subclass__(cls):
|
| 40 |
+
ModelConfig.registry[cls.__name__] = cls
|
| 41 |
+
|
| 42 |
+
@property
|
| 43 |
+
def model_path(self):
|
| 44 |
+
return f"models/{self.name}"
|
| 45 |
+
|
| 46 |
+
# Custom Dataset for SFT
|
| 47 |
+
class SFTDataset(Dataset):
|
| 48 |
+
def __init__(self, data, tokenizer, max_length=128):
|
| 49 |
+
self.data = data
|
| 50 |
+
self.tokenizer = tokenizer
|
| 51 |
+
self.max_length = max_length
|
| 52 |
+
|
| 53 |
+
def __len__(self):
|
| 54 |
+
return len(self.data)
|
| 55 |
+
|
| 56 |
+
def __getitem__(self, idx):
|
| 57 |
+
prompt = self.data[idx]["prompt"]
|
| 58 |
+
response = self.data[idx]["response"]
|
| 59 |
+
input_text = f"{prompt} {response}"
|
| 60 |
+
encoding = self.tokenizer(
|
| 61 |
+
input_text,
|
| 62 |
+
max_length=self.max_length,
|
| 63 |
+
padding="max_length",
|
| 64 |
+
truncation=True,
|
| 65 |
+
return_tensors="pt"
|
| 66 |
+
)
|
| 67 |
+
return {
|
| 68 |
+
"input_ids": encoding["input_ids"].squeeze(),
|
| 69 |
+
"attention_mask": encoding["attention_mask"].squeeze(),
|
| 70 |
+
"labels": encoding["input_ids"].squeeze()
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
# Model Builder Class
|
| 74 |
+
class ModelBuilder:
|
| 75 |
+
def __init__(self):
|
| 76 |
+
self.config = None
|
| 77 |
+
self.model = None
|
| 78 |
+
self.tokenizer = None
|
| 79 |
+
self.sft_data = None
|
| 80 |
+
|
| 81 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 82 |
+
"""Load a model from a path with an optional config"""
|
| 83 |
+
with st.spinner("Loading model... β³"):
|
| 84 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 85 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 86 |
+
if self.tokenizer.pad_token is None:
|
| 87 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 88 |
+
if config:
|
| 89 |
+
self.config = config
|
| 90 |
+
st.success("Model loaded! β
")
|
| 91 |
+
return self
|
| 92 |
+
|
| 93 |
+
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
| 94 |
+
"""Perform Supervised Fine-Tuning with CSV data"""
|
| 95 |
+
self.sft_data = []
|
| 96 |
+
with open(csv_path, "r") as f:
|
| 97 |
+
reader = csv.DictReader(f)
|
| 98 |
+
for row in reader:
|
| 99 |
+
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
| 100 |
+
|
| 101 |
+
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
| 102 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
| 103 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
| 104 |
+
|
| 105 |
+
self.model.train()
|
| 106 |
+
for epoch in range(epochs):
|
| 107 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ"):
|
| 108 |
+
total_loss = 0
|
| 109 |
+
for batch in dataloader:
|
| 110 |
+
optimizer.zero_grad()
|
| 111 |
+
input_ids = batch["input_ids"].to(self.model.device)
|
| 112 |
+
attention_mask = batch["attention_mask"].to(self.model.device)
|
| 113 |
+
labels = batch["labels"].to(self.model.device)
|
| 114 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
| 115 |
+
loss = outputs.loss
|
| 116 |
+
loss.backward()
|
| 117 |
+
optimizer.step()
|
| 118 |
+
total_loss += loss.item()
|
| 119 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
| 120 |
+
st.success("SFT Fine-tuning completed! π")
|
| 121 |
+
return self
|
| 122 |
+
|
| 123 |
+
def save_model(self, path: str):
|
| 124 |
+
"""Save the fine-tuned model"""
|
| 125 |
+
with st.spinner("Saving model... πΎ"):
|
| 126 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 127 |
+
self.model.save_pretrained(path)
|
| 128 |
+
self.tokenizer.save_pretrained(path)
|
| 129 |
+
st.success(f"Model saved at {path}! β
")
|
| 130 |
+
|
| 131 |
+
def evaluate(self, prompt: str):
|
| 132 |
+
"""Evaluate the model with a prompt"""
|
| 133 |
+
self.model.eval()
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 136 |
+
outputs = self.model.generate(**inputs, max_new_tokens=50)
|
| 137 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 138 |
+
|
| 139 |
+
# Utility Functions
|
| 140 |
+
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
| 141 |
+
"""Generate a download link for a file."""
|
| 142 |
+
with open(file_path, 'rb') as f:
|
| 143 |
+
data = f.read()
|
| 144 |
+
b64 = base64.b64encode(data).decode()
|
| 145 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>'
|
| 146 |
+
|
| 147 |
+
def zip_directory(directory_path, zip_path):
|
| 148 |
+
"""Create a zip file from a directory."""
|
| 149 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 150 |
+
for root, _, files in os.walk(directory_path):
|
| 151 |
+
for file in files:
|
| 152 |
+
file_path = os.path.join(root, file)
|
| 153 |
+
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
|
| 154 |
+
zipf.write(file_path, arcname)
|
| 155 |
+
|
| 156 |
+
def get_model_files():
|
| 157 |
+
"""List all saved model directories."""
|
| 158 |
+
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
|
| 159 |
+
|
| 160 |
+
# Main App
|
| 161 |
+
st.title("SFT Model Builder π€π")
|
| 162 |
+
|
| 163 |
+
# Sidebar for Model Management
|
| 164 |
+
st.sidebar.header("Model Management ποΈ")
|
| 165 |
+
model_dirs = get_model_files()
|
| 166 |
+
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
| 167 |
+
|
| 168 |
+
if selected_model != "None" and st.sidebar.button("Load Model π"):
|
| 169 |
+
if 'builder' not in st.session_state:
|
| 170 |
+
st.session_state['builder'] = ModelBuilder()
|
| 171 |
+
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
|
| 172 |
+
st.session_state['builder'].load_model(selected_model, config)
|
| 173 |
+
st.session_state['model_loaded'] = True
|
| 174 |
+
st.rerun()
|
| 175 |
+
|
| 176 |
+
# Main UI with Tabs
|
| 177 |
+
tab1, tab2, tab3 = st.tabs(["Build New Model π±", "Fine-Tune Model π§", "Test Model π§ͺ"])
|
| 178 |
+
|
| 179 |
+
with tab1:
|
| 180 |
+
st.header("Build New Model π±")
|
| 181 |
+
base_model = st.selectbox(
|
| 182 |
+
"Select Base Model",
|
| 183 |
+
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"],
|
| 184 |
+
help="Choose a small model to start with"
|
| 185 |
+
)
|
| 186 |
+
model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
|
| 187 |
+
domain = st.text_input("Target Domain", "general")
|
| 188 |
+
|
| 189 |
+
if st.button("Download Model β¬οΈ"):
|
| 190 |
+
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
|
| 191 |
+
builder = ModelBuilder()
|
| 192 |
+
builder.load_model(base_model, config)
|
| 193 |
+
builder.save_model(config.model_path)
|
| 194 |
+
st.session_state['builder'] = builder
|
| 195 |
+
st.session_state['model_loaded'] = True
|
| 196 |
+
st.success(f"Model downloaded and saved to {config.model_path}! π")
|
| 197 |
+
st.rerun()
|
| 198 |
+
|
| 199 |
+
with tab2:
|
| 200 |
+
st.header("Fine-Tune Model π§")
|
| 201 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
| 202 |
+
st.warning("Please download or load a model first! β οΈ")
|
| 203 |
+
else:
|
| 204 |
+
# Generate Sample CSV
|
| 205 |
+
if st.button("Generate Sample CSV π"):
|
| 206 |
+
sample_data = [
|
| 207 |
+
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
|
| 208 |
+
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
|
| 209 |
+
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
|
| 210 |
+
]
|
| 211 |
+
csv_path = f"sft_data_{int(time.time())}.csv"
|
| 212 |
+
with open(csv_path, "w", newline="") as f:
|
| 213 |
+
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
| 214 |
+
writer.writeheader()
|
| 215 |
+
writer.writerows(sample_data)
|
| 216 |
+
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
| 217 |
+
st.success(f"Sample CSV generated as {csv_path}! β
")
|
| 218 |
+
|
| 219 |
+
# Upload CSV and Fine-Tune
|
| 220 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
| 221 |
+
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
|
| 222 |
+
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
| 223 |
+
with open(csv_path, "wb") as f:
|
| 224 |
+
f.write(uploaded_csv.read())
|
| 225 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
| 226 |
+
new_config = ModelConfig(
|
| 227 |
+
name=new_model_name,
|
| 228 |
+
base_model=st.session_state['builder'].config.base_model,
|
| 229 |
+
size="small",
|
| 230 |
+
domain=st.session_state['builder'].config.domain
|
| 231 |
+
)
|
| 232 |
+
st.session_state['builder'].config = new_config
|
| 233 |
+
with st.status("Fine-tuning model... β³", expanded=True) as status:
|
| 234 |
+
st.session_state['builder'].fine_tune_sft(csv_path)
|
| 235 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
| 236 |
+
status.update(label="Fine-tuning completed! π", state="complete")
|
| 237 |
+
|
| 238 |
+
# Create a zip file of the model directory
|
| 239 |
+
zip_path = f"{new_config.model_path}.zip"
|
| 240 |
+
zip_directory(new_config.model_path, zip_path)
|
| 241 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
|
| 242 |
+
st.rerun()
|
| 243 |
+
|
| 244 |
+
with tab3:
|
| 245 |
+
st.header("Test Model π§ͺ")
|
| 246 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
| 247 |
+
st.warning("Please download or load a model first! β οΈ")
|
| 248 |
+
else:
|
| 249 |
+
if st.session_state['builder'].sft_data:
|
| 250 |
+
st.write("Testing with SFT Data:")
|
| 251 |
+
for item in st.session_state['builder'].sft_data[:3]:
|
| 252 |
+
prompt = item["prompt"]
|
| 253 |
+
expected = item["response"]
|
| 254 |
+
generated = st.session_state['builder'].evaluate(prompt)
|
| 255 |
+
st.write(f"**Prompt**: {prompt}")
|
| 256 |
+
st.write(f"**Expected**: {expected}")
|
| 257 |
+
st.write(f"**Generated**: {generated}")
|
| 258 |
+
st.write("---")
|
| 259 |
+
|
| 260 |
+
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
| 261 |
+
if st.button("Run Test βΆοΈ"):
|
| 262 |
+
result = st.session_state['builder'].evaluate(test_prompt)
|
| 263 |
+
st.write(f"**Generated Response**: {result}")
|
| 264 |
+
|
| 265 |
+
# Export Model Files
|
| 266 |
+
if st.button("Export Model Files π¦"):
|
| 267 |
+
config = st.session_state['builder'].config
|
| 268 |
+
app_code = f"""
|
| 269 |
+
import streamlit as st
|
| 270 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 271 |
+
|
| 272 |
+
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
| 273 |
+
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
| 274 |
+
|
| 275 |
+
st.title("SFT Model Demo")
|
| 276 |
+
input_text = st.text_area("Enter prompt")
|
| 277 |
+
if st.button("Generate"):
|
| 278 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 279 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 280 |
+
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 281 |
+
"""
|
| 282 |
+
with open("sft_app.py", "w") as f:
|
| 283 |
+
f.write(app_code)
|
| 284 |
+
reqs = "streamlit\ntorch\ntransformers\n"
|
| 285 |
+
with open("sft_requirements.txt", "w") as f:
|
| 286 |
+
f.write(reqs)
|
| 287 |
+
readme = f"""
|
| 288 |
+
# SFT Model Demo
|
| 289 |
+
|
| 290 |
+
## How to run
|
| 291 |
+
1. Install requirements: `pip install -r sft_requirements.txt`
|
| 292 |
+
2. Run the app: `streamlit run sft_app.py`
|
| 293 |
+
3. Input a prompt and click "Generate".
|
| 294 |
+
"""
|
| 295 |
+
with open("sft_README.md", "w") as f:
|
| 296 |
+
f.write(readme)
|
| 297 |
+
|
| 298 |
+
st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
|
| 299 |
+
st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
|
| 300 |
+
st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
|
| 301 |
+
st.success("Model files exported! β
")
|