Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import aiofiles
|
| 2 |
+
import asyncio
|
| 3 |
+
import base64
|
| 4 |
+
import cv2
|
| 5 |
+
import fitz
|
| 6 |
+
import glob
|
| 7 |
+
import io
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import pytz
|
| 13 |
+
import random
|
| 14 |
+
import re
|
| 15 |
+
import requests
|
| 16 |
+
import shutil
|
| 17 |
+
import streamlit as st
|
| 18 |
+
import sys
|
| 19 |
+
import time
|
| 20 |
+
import torch
|
| 21 |
+
import zipfile
|
| 22 |
+
|
| 23 |
+
from audio_recorder_streamlit import audio_recorder
|
| 24 |
+
from contextlib import redirect_stdout
|
| 25 |
+
from dataclasses import dataclass
|
| 26 |
+
from datetime import datetime
|
| 27 |
+
from diffusers import StableDiffusionPipeline
|
| 28 |
+
from io import BytesIO
|
| 29 |
+
from moviepy.editor import VideoFileClip
|
| 30 |
+
from openai import OpenAI
|
| 31 |
+
from PIL import Image
|
| 32 |
+
from PyPDF2 import PdfReader
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 34 |
+
from typing import Optional
|
| 35 |
+
|
| 36 |
+
# Initialize OpenAI client
|
| 37 |
+
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
| 38 |
+
|
| 39 |
+
# Logging setup
|
| 40 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
log_records = []
|
| 43 |
+
class LogCaptureHandler(logging.Handler):
|
| 44 |
+
def emit(self, record):
|
| 45 |
+
log_records.append(record)
|
| 46 |
+
logger.addHandler(LogCaptureHandler())
|
| 47 |
+
|
| 48 |
+
# Streamlit configuration
|
| 49 |
+
st.set_page_config(
|
| 50 |
+
page_title="AI Multimodal Titan 🚀",
|
| 51 |
+
page_icon="🤖",
|
| 52 |
+
layout="wide",
|
| 53 |
+
initial_sidebar_state="expanded",
|
| 54 |
+
menu_items={
|
| 55 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
| 56 |
+
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
| 57 |
+
'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video Processing, Code Execution, and More! 🌌"
|
| 58 |
+
}
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Session state initialization
|
| 62 |
+
for key in ['history', 'builder', 'model_loaded', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'messages']:
|
| 63 |
+
st.session_state.setdefault(key, [] if key in ['history', 'messages'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else None if key == 'builder' else 0 if key == 'unique_counter' else False)
|
| 64 |
+
st.session_state.setdefault('selected_model_type', "Causal LM")
|
| 65 |
+
st.session_state.setdefault('selected_model', "None")
|
| 66 |
+
st.session_state.setdefault('gallery_size', 2)
|
| 67 |
+
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
|
| 68 |
+
|
| 69 |
+
@dataclass
|
| 70 |
+
class ModelConfig:
|
| 71 |
+
name: str
|
| 72 |
+
base_model: str
|
| 73 |
+
size: str
|
| 74 |
+
domain: Optional[str] = None
|
| 75 |
+
model_type: str = "causal_lm"
|
| 76 |
+
@property
|
| 77 |
+
def model_path(self):
|
| 78 |
+
return f"models/{self.name}"
|
| 79 |
+
|
| 80 |
+
@dataclass
|
| 81 |
+
class DiffusionConfig:
|
| 82 |
+
name: str
|
| 83 |
+
base_model: str
|
| 84 |
+
size: str
|
| 85 |
+
domain: Optional[str] = None
|
| 86 |
+
@property
|
| 87 |
+
def model_path(self):
|
| 88 |
+
return f"diffusion_models/{self.name}"
|
| 89 |
+
|
| 90 |
+
class ModelBuilder:
|
| 91 |
+
def __init__(self):
|
| 92 |
+
self.config = None
|
| 93 |
+
self.model = None
|
| 94 |
+
self.tokenizer = None
|
| 95 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 96 |
+
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 97 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 98 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 99 |
+
if self.tokenizer.pad_token is None:
|
| 100 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 101 |
+
if config:
|
| 102 |
+
self.config = config
|
| 103 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 104 |
+
st.success(f"Model loaded! 🎉")
|
| 105 |
+
return self
|
| 106 |
+
def save_model(self, path: str):
|
| 107 |
+
with st.spinner("Saving model... 💾"):
|
| 108 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 109 |
+
self.model.save_pretrained(path)
|
| 110 |
+
self.tokenizer.save_pretrained(path)
|
| 111 |
+
st.success(f"Model saved at {path}! ✅")
|
| 112 |
+
|
| 113 |
+
class DiffusionBuilder:
|
| 114 |
+
def __init__(self):
|
| 115 |
+
self.config = None
|
| 116 |
+
self.pipeline = None
|
| 117 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
| 118 |
+
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
| 119 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
| 120 |
+
if config:
|
| 121 |
+
self.config = config
|
| 122 |
+
st.success("Diffusion model loaded! 🎨")
|
| 123 |
+
return self
|
| 124 |
+
def save_model(self, path: str):
|
| 125 |
+
with st.spinner("Saving diffusion model... 💾"):
|
| 126 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 127 |
+
self.pipeline.save_pretrained(path)
|
| 128 |
+
st.success(f"Diffusion model saved at {path}! ✅")
|
| 129 |
+
def generate(self, prompt: str):
|
| 130 |
+
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 131 |
+
|
| 132 |
+
def generate_filename(prompt, ext="png"):
|
| 133 |
+
central = pytz.timezone('US/Central')
|
| 134 |
+
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
| 135 |
+
safe_prompt = re.sub(r'[<>:"/\\|?*]', '_', prompt)[:240]
|
| 136 |
+
return f"{safe_date_time}_{safe_prompt}.{ext}"
|
| 137 |
+
|
| 138 |
+
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
| 139 |
+
with open(file_path, "rb") as f:
|
| 140 |
+
data = base64.b64encode(f.read()).decode()
|
| 141 |
+
return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 142 |
+
|
| 143 |
+
def zip_directory(directory_path, zip_path):
|
| 144 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 145 |
+
for root, _, files in os.walk(directory_path):
|
| 146 |
+
for file in files:
|
| 147 |
+
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 148 |
+
|
| 149 |
+
def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]):
|
| 150 |
+
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
|
| 151 |
+
|
| 152 |
+
def download_pdf(url, output_path):
|
| 153 |
+
try:
|
| 154 |
+
response = requests.get(url, stream=True, timeout=10)
|
| 155 |
+
if response.status_code == 200:
|
| 156 |
+
with open(output_path, "wb") as f:
|
| 157 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 158 |
+
f.write(chunk)
|
| 159 |
+
return True
|
| 160 |
+
except requests.RequestException as e:
|
| 161 |
+
logger.error(f"Failed to download {url}: {e}")
|
| 162 |
+
return False
|
| 163 |
+
|
| 164 |
+
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 165 |
+
start_time = time.time()
|
| 166 |
+
status = st.empty()
|
| 167 |
+
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
| 168 |
+
try:
|
| 169 |
+
doc = fitz.open(pdf_path)
|
| 170 |
+
output_files = []
|
| 171 |
+
if mode == "single":
|
| 172 |
+
page = doc[0]
|
| 173 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 174 |
+
output_file = generate_filename("single", "png")
|
| 175 |
+
pix.save(output_file)
|
| 176 |
+
output_files.append(output_file)
|
| 177 |
+
elif mode == "double":
|
| 178 |
+
if len(doc) >= 2:
|
| 179 |
+
pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 180 |
+
pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 181 |
+
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
|
| 182 |
+
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
|
| 183 |
+
combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height)))
|
| 184 |
+
combined_img.paste(img1, (0, 0))
|
| 185 |
+
combined_img.paste(img2, (pix1.width, 0))
|
| 186 |
+
output_file = generate_filename("double", "png")
|
| 187 |
+
combined_img.save(output_file)
|
| 188 |
+
output_files.append(output_file)
|
| 189 |
+
elif mode == "allpages":
|
| 190 |
+
for i in range(len(doc)):
|
| 191 |
+
page = doc[i]
|
| 192 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 193 |
+
output_file = generate_filename(f"page_{i}", "png")
|
| 194 |
+
pix.save(output_file)
|
| 195 |
+
output_files.append(output_file)
|
| 196 |
+
doc.close()
|
| 197 |
+
elapsed = int(time.time() - start_time)
|
| 198 |
+
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 199 |
+
return output_files
|
| 200 |
+
except Exception as e:
|
| 201 |
+
status.error(f"Failed to process PDF: {str(e)}")
|
| 202 |
+
return []
|
| 203 |
+
|
| 204 |
+
async def process_ocr(image, output_file):
|
| 205 |
+
start_time = time.time()
|
| 206 |
+
status = st.empty()
|
| 207 |
+
status.text("Processing GOT-OCR2_0... (0s)")
|
| 208 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 209 |
+
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 210 |
+
temp_file = generate_filename("temp", "png")
|
| 211 |
+
image.save(temp_file)
|
| 212 |
+
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
| 213 |
+
os.remove(temp_file)
|
| 214 |
+
elapsed = int(time.time() - start_time)
|
| 215 |
+
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 216 |
+
async with aiofiles.open(output_file, "w") as f:
|
| 217 |
+
await f.write(result)
|
| 218 |
+
return result
|
| 219 |
+
|
| 220 |
+
async def process_image_gen(prompt, output_file):
|
| 221 |
+
start_time = time.time()
|
| 222 |
+
status = st.empty()
|
| 223 |
+
status.text("Processing Image Gen... (0s)")
|
| 224 |
+
pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
| 225 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 226 |
+
elapsed = int(time.time() - start_time)
|
| 227 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
| 228 |
+
gen_image.save(output_file)
|
| 229 |
+
return gen_image
|
| 230 |
+
|
| 231 |
+
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
| 232 |
+
buffered = BytesIO()
|
| 233 |
+
image.save(buffered, format="PNG")
|
| 234 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 235 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}]
|
| 236 |
+
try:
|
| 237 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 238 |
+
return response.choices[0].message.content
|
| 239 |
+
except Exception as e:
|
| 240 |
+
return f"Error processing image with GPT: {str(e)}"
|
| 241 |
+
|
| 242 |
+
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
| 243 |
+
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
|
| 244 |
+
try:
|
| 245 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 246 |
+
return response.choices[0].message.content
|
| 247 |
+
except Exception as e:
|
| 248 |
+
return f"Error processing text with GPT: {str(e)}"
|
| 249 |
+
|
| 250 |
+
def process_audio(audio_input, prompt):
|
| 251 |
+
with open(audio_input, "rb") as file:
|
| 252 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 253 |
+
response = client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": f"{prompt}\n\n{transcription.text}"}])
|
| 254 |
+
return transcription.text, response.choices[0].message.content
|
| 255 |
+
|
| 256 |
+
def process_video(video_path, prompt):
|
| 257 |
+
base64Frames, audio_path = process_video_frames(video_path)
|
| 258 |
+
with open(video_path, "rb") as file:
|
| 259 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
| 260 |
+
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
|
| 261 |
+
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages)
|
| 262 |
+
return response.choices[0].message.content
|
| 263 |
+
|
| 264 |
+
def process_video_frames(video_path, seconds_per_frame=2):
|
| 265 |
+
base64Frames = []
|
| 266 |
+
base_video_path, _ = os.path.splitext(video_path)
|
| 267 |
+
video = cv2.VideoCapture(video_path)
|
| 268 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 269 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
| 270 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
| 271 |
+
curr_frame = 0
|
| 272 |
+
while curr_frame < total_frames - 1:
|
| 273 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
| 274 |
+
success, frame = video.read()
|
| 275 |
+
if not success:
|
| 276 |
+
break
|
| 277 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
| 278 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
| 279 |
+
curr_frame += frames_to_skip
|
| 280 |
+
video.release()
|
| 281 |
+
audio_path = f"{base_video_path}.mp3"
|
| 282 |
+
try:
|
| 283 |
+
clip = VideoFileClip(video_path)
|
| 284 |
+
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
| 285 |
+
clip.audio.close()
|
| 286 |
+
clip.close()
|
| 287 |
+
except:
|
| 288 |
+
logger.info("No audio track found in video.")
|
| 289 |
+
return base64Frames, audio_path
|
| 290 |
+
|
| 291 |
+
def execute_code(code):
|
| 292 |
+
buffer = io.StringIO()
|
| 293 |
+
try:
|
| 294 |
+
with redirect_stdout(buffer):
|
| 295 |
+
exec(code, {}, {})
|
| 296 |
+
return buffer.getvalue(), None
|
| 297 |
+
except Exception as e:
|
| 298 |
+
return None, str(e)
|
| 299 |
+
finally:
|
| 300 |
+
buffer.close()
|
| 301 |
+
|
| 302 |
+
# Sidebar
|
| 303 |
+
st.sidebar.subheader("Gallery Settings")
|
| 304 |
+
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
| 305 |
+
|
| 306 |
+
# Tabs
|
| 307 |
+
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚"])
|
| 308 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery) = tabs
|
| 309 |
+
|
| 310 |
+
with tab_camera:
|
| 311 |
+
st.header("Camera Snap 📷")
|
| 312 |
+
cols = st.columns(2)
|
| 313 |
+
for i, cam_key in enumerate(["cam0", "cam1"]):
|
| 314 |
+
with cols[i]:
|
| 315 |
+
cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key)
|
| 316 |
+
if cam_img:
|
| 317 |
+
filename = generate_filename(f"cam{i}")
|
| 318 |
+
with open(filename, "wb") as f:
|
| 319 |
+
f.write(cam_img.getvalue())
|
| 320 |
+
st.session_state[f'cam{i}_file'] = filename
|
| 321 |
+
st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}")
|
| 322 |
+
st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True)
|
| 323 |
+
|
| 324 |
+
with tab_download:
|
| 325 |
+
st.header("Download PDFs 📥")
|
| 326 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", height=200)
|
| 327 |
+
if st.button("Download 🤖"):
|
| 328 |
+
urls = url_input.strip().split("\n")
|
| 329 |
+
progress_bar = st.progress(0)
|
| 330 |
+
for idx, url in enumerate(urls):
|
| 331 |
+
if url:
|
| 332 |
+
output_path = generate_filename(url, "pdf")
|
| 333 |
+
if download_pdf(url, output_path):
|
| 334 |
+
st.session_state['downloaded_pdfs'][url] = output_path
|
| 335 |
+
st.session_state['history'].append(f"Downloaded PDF: {output_path}")
|
| 336 |
+
st.session_state['asset_checkboxes'][output_path] = True
|
| 337 |
+
progress_bar.progress((idx + 1) / len(urls))
|
| 338 |
+
|
| 339 |
+
with tab_ocr:
|
| 340 |
+
st.header("Test OCR 🔍")
|
| 341 |
+
all_files = get_gallery_files()
|
| 342 |
+
if all_files:
|
| 343 |
+
selected_file = st.selectbox("Select File", all_files, key="ocr_select")
|
| 344 |
+
if selected_file and st.button("Run OCR 🚀"):
|
| 345 |
+
if selected_file.endswith('.png'):
|
| 346 |
+
image = Image.open(selected_file)
|
| 347 |
+
else:
|
| 348 |
+
doc = fitz.open(selected_file)
|
| 349 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
| 350 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 351 |
+
doc.close()
|
| 352 |
+
output_file = generate_filename("ocr_output", "txt")
|
| 353 |
+
result = asyncio.run(process_ocr(image, output_file))
|
| 354 |
+
st.text_area("OCR Result", result, height=200)
|
| 355 |
+
st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}")
|
| 356 |
+
|
| 357 |
+
with tab_build:
|
| 358 |
+
st.header("Build Titan 🌱")
|
| 359 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 360 |
+
base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
|
| 361 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
| 362 |
+
if st.button("Download Model ⬇️"):
|
| 363 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
|
| 364 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 365 |
+
builder.load_model(base_model, config)
|
| 366 |
+
builder.save_model(config.model_path)
|
| 367 |
+
st.session_state['builder'] = builder
|
| 368 |
+
st.session_state['model_loaded'] = True
|
| 369 |
+
|
| 370 |
+
with tab_imggen:
|
| 371 |
+
st.header("Test Image Gen 🎨")
|
| 372 |
+
prompt = st.text_area("Prompt", "Generate a futuristic cityscape")
|
| 373 |
+
if st.button("Run Image Gen 🚀"):
|
| 374 |
+
output_file = generate_filename("gen_output", "png")
|
| 375 |
+
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 376 |
+
st.image(result, caption="Generated Image", use_container_width=True)
|
| 377 |
+
st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}")
|
| 378 |
+
|
| 379 |
+
with tab_pdf:
|
| 380 |
+
st.header("PDF Process 📄")
|
| 381 |
+
uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
| 382 |
+
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
|
| 383 |
+
if st.button("Process PDFs"):
|
| 384 |
+
for pdf_file in uploaded_pdfs:
|
| 385 |
+
pdf_path = generate_filename(pdf_file.name, "pdf")
|
| 386 |
+
with open(pdf_path, "wb") as f:
|
| 387 |
+
f.write(pdf_file.read())
|
| 388 |
+
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "double" if view_mode == "Double Page" else "single"))
|
| 389 |
+
for snapshot in snapshots:
|
| 390 |
+
st.image(Image.open(snapshot), caption=snapshot)
|
| 391 |
+
text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image")
|
| 392 |
+
st.text_area(f"Extracted Text from {snapshot}", text)
|
| 393 |
+
code_prompt = f"Generate Python code based on this text:\n\n{text}"
|
| 394 |
+
code = process_text_with_prompt(text, code_prompt)
|
| 395 |
+
st.code(code, language="python")
|
| 396 |
+
if st.button(f"Execute Code from {snapshot}"):
|
| 397 |
+
output, error = execute_code(code)
|
| 398 |
+
if error:
|
| 399 |
+
st.error(f"Error: {error}")
|
| 400 |
+
else:
|
| 401 |
+
st.success(f"Output: {output or 'No output'}")
|
| 402 |
+
|
| 403 |
+
with tab_image:
|
| 404 |
+
st.header("Image Process 🖼️")
|
| 405 |
+
uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True)
|
| 406 |
+
prompt = st.text_input("Prompt", "Extract the electronic text from image")
|
| 407 |
+
if st.button("Process Images"):
|
| 408 |
+
for img_file in uploaded_images:
|
| 409 |
+
img = Image.open(img_file)
|
| 410 |
+
st.image(img, caption=img_file.name)
|
| 411 |
+
result = process_image_with_prompt(img, prompt)
|
| 412 |
+
st.text_area(f"Result for {img_file.name}", result)
|
| 413 |
+
|
| 414 |
+
with tab_audio:
|
| 415 |
+
st.header("Audio Process 🎵")
|
| 416 |
+
audio_bytes = audio_recorder()
|
| 417 |
+
if audio_bytes:
|
| 418 |
+
filename = generate_filename("recording", "wav")
|
| 419 |
+
with open(filename, "wb") as f:
|
| 420 |
+
f.write(audio_bytes)
|
| 421 |
+
st.audio(filename)
|
| 422 |
+
transcript, summary = process_audio(filename, "Summarize this audio in markdown")
|
| 423 |
+
st.text_area("Transcript", transcript)
|
| 424 |
+
st.markdown(summary)
|
| 425 |
+
|
| 426 |
+
with tab_video:
|
| 427 |
+
st.header("Video Process 🎥")
|
| 428 |
+
video_input = st.file_uploader("Upload Video", type=["mp4"])
|
| 429 |
+
if video_input:
|
| 430 |
+
video_path = generate_filename(video_input.name, "mp4")
|
| 431 |
+
with open(video_path, "wb") as f:
|
| 432 |
+
f.write(video_input.read())
|
| 433 |
+
st.video(video_path)
|
| 434 |
+
result = process_video(video_path, "Summarize this video in markdown")
|
| 435 |
+
st.markdown(result)
|
| 436 |
+
|
| 437 |
+
with tab_code:
|
| 438 |
+
st.header("Code Executor 🧑💻")
|
| 439 |
+
code_input = st.text_area("Python Code", height=400)
|
| 440 |
+
if st.button("Run Code"):
|
| 441 |
+
output, error = execute_code(code_input)
|
| 442 |
+
if error:
|
| 443 |
+
st.error(f"Error: {error}")
|
| 444 |
+
else:
|
| 445 |
+
st.success(f"Output: {output or 'No output'}")
|
| 446 |
+
|
| 447 |
+
with tab_gallery:
|
| 448 |
+
st.header("Gallery 📚")
|
| 449 |
+
all_files = get_gallery_files()
|
| 450 |
+
for file in all_files:
|
| 451 |
+
if file.endswith('.png'):
|
| 452 |
+
st.image(Image.open(file), caption=file)
|
| 453 |
+
elif file.endswith('.pdf'):
|
| 454 |
+
doc = fitz.open(file)
|
| 455 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 456 |
+
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file)
|
| 457 |
+
doc.close()
|
| 458 |
+
elif file.endswith('.md'):
|
| 459 |
+
with open(file, "r") as f:
|
| 460 |
+
st.markdown(f.read())
|
| 461 |
+
elif file.endswith('.wav'):
|
| 462 |
+
st.audio(file)
|
| 463 |
+
elif file.endswith('.mp4'):
|
| 464 |
+
st.video(file)
|
| 465 |
+
|
| 466 |
+
# Update gallery in sidebar
|
| 467 |
+
def update_gallery():
|
| 468 |
+
container = st.session_state['asset_gallery_container']
|
| 469 |
+
container.empty()
|
| 470 |
+
all_files = get_gallery_files()
|
| 471 |
+
if all_files:
|
| 472 |
+
container.markdown("### Asset Gallery 📸📖")
|
| 473 |
+
cols = container.columns(2)
|
| 474 |
+
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
|
| 475 |
+
with cols[idx % 2]:
|
| 476 |
+
if file.endswith('.png'):
|
| 477 |
+
st.image(Image.open(file), caption=os.path.basename(file))
|
| 478 |
+
elif file.endswith('.pdf'):
|
| 479 |
+
doc = fitz.open(file)
|
| 480 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 481 |
+
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file))
|
| 482 |
+
doc.close()
|
| 483 |
+
st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False))
|
| 484 |
+
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True)
|
| 485 |
+
if st.button("Delete", key=f"delete_{file}"):
|
| 486 |
+
os.remove(file)
|
| 487 |
+
st.session_state['asset_checkboxes'].pop(file, None)
|
| 488 |
+
st.experimental_rerun()
|
| 489 |
+
|
| 490 |
+
update_gallery()
|
| 491 |
+
|
| 492 |
+
# Sidebar logs and history
|
| 493 |
+
st.sidebar.subheader("Action Logs 📜")
|
| 494 |
+
for record in log_records:
|
| 495 |
+
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
| 496 |
+
st.sidebar.subheader("History 📜")
|
| 497 |
+
for entry in st.session_state.get("history", []):
|
| 498 |
+
if entry:
|
| 499 |
+
st.sidebar.write(entry)
|