Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- README (3).md +14 -0
- app (2).py +568 -0
- gitattributes (2) +37 -0
- gitignore +3 -0
- packages.txt +1 -0
- requirements (3).txt +12 -0
README (3).md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: D-Fine - SOTA Real-Time Object Detector
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.29.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Object Detection on Images and Video
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app (2).py
ADDED
|
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import tqdm
|
| 4 |
+
import uuid
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import spaces
|
| 9 |
+
import trackers
|
| 10 |
+
import numpy as np
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import imageio.v3 as iio
|
| 13 |
+
import supervision as sv
|
| 14 |
+
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from functools import lru_cache
|
| 17 |
+
from typing import List, Optional, Tuple
|
| 18 |
+
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
| 21 |
+
from transformers.image_utils import load_image
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Configuration constants
|
| 25 |
+
CHECKPOINTS = [
|
| 26 |
+
"ustc-community/dfine-medium-obj2coco",
|
| 27 |
+
"ustc-community/dfine-medium-coco",
|
| 28 |
+
"ustc-community/dfine-medium-obj365",
|
| 29 |
+
"ustc-community/dfine-nano-coco",
|
| 30 |
+
"ustc-community/dfine-small-coco",
|
| 31 |
+
"ustc-community/dfine-large-coco",
|
| 32 |
+
"ustc-community/dfine-xlarge-coco",
|
| 33 |
+
"ustc-community/dfine-small-obj365",
|
| 34 |
+
"ustc-community/dfine-large-obj365",
|
| 35 |
+
"ustc-community/dfine-xlarge-obj365",
|
| 36 |
+
"ustc-community/dfine-small-obj2coco",
|
| 37 |
+
"ustc-community/dfine-large-obj2coco-e25",
|
| 38 |
+
"ustc-community/dfine-xlarge-obj2coco",
|
| 39 |
+
]
|
| 40 |
+
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
| 41 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
| 42 |
+
|
| 43 |
+
TORCH_DTYPE = torch.float32
|
| 44 |
+
|
| 45 |
+
# Image
|
| 46 |
+
IMAGE_EXAMPLES = [
|
| 47 |
+
{"path": "./examples/images/tennis.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 48 |
+
{"path": "./examples/images/dogs.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 49 |
+
{"path": "./examples/images/nascar.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 50 |
+
{"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
| 51 |
+
{
|
| 52 |
+
"path": None,
|
| 53 |
+
"use_url": True,
|
| 54 |
+
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
|
| 55 |
+
"label": "Flickr Image",
|
| 56 |
+
},
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
# Video
|
| 60 |
+
MAX_NUM_FRAMES = 250
|
| 61 |
+
BATCH_SIZE = 4
|
| 62 |
+
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
| 63 |
+
VIDEO_OUTPUT_DIR = Path("static/videos")
|
| 64 |
+
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
class TrackingAlgorithm:
|
| 67 |
+
BYTETRACK = "ByteTrack (2021)"
|
| 68 |
+
DEEPSORT = "DeepSORT (2017)"
|
| 69 |
+
SORT = "SORT (2016)"
|
| 70 |
+
|
| 71 |
+
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
| 72 |
+
VIDEO_EXAMPLES = [
|
| 73 |
+
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 74 |
+
{"path": "./examples/videos/traffic.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
|
| 75 |
+
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 76 |
+
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Create a color palette for visualization
|
| 81 |
+
# These hex color codes define different colors for tracking different objects
|
| 82 |
+
color = sv.ColorPalette.from_hex([
|
| 83 |
+
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
|
| 84 |
+
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
|
| 85 |
+
])
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
logging.basicConfig(
|
| 89 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 90 |
+
)
|
| 91 |
+
logger = logging.getLogger(__name__)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@lru_cache(maxsize=3)
|
| 95 |
+
def get_model_and_processor(checkpoint: str):
|
| 96 |
+
model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE)
|
| 97 |
+
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
|
| 98 |
+
return model, image_processor
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
@spaces.GPU(duration=20)
|
| 102 |
+
def detect_objects(
|
| 103 |
+
checkpoint: str,
|
| 104 |
+
images: List[np.ndarray] | np.ndarray,
|
| 105 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 106 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 107 |
+
batch_size: int = BATCH_SIZE,
|
| 108 |
+
classes: Optional[List[str]] = None,
|
| 109 |
+
):
|
| 110 |
+
|
| 111 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 112 |
+
model, image_processor = get_model_and_processor(checkpoint)
|
| 113 |
+
model = model.to(device)
|
| 114 |
+
|
| 115 |
+
if classes is not None:
|
| 116 |
+
wrong_classes = [cls for cls in classes if cls not in model.config.label2id]
|
| 117 |
+
if wrong_classes:
|
| 118 |
+
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
| 119 |
+
keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id]
|
| 120 |
+
else:
|
| 121 |
+
keep_ids = None
|
| 122 |
+
|
| 123 |
+
if isinstance(images, np.ndarray) and images.ndim == 4:
|
| 124 |
+
images = [x for x in images] # split video array into list of images
|
| 125 |
+
|
| 126 |
+
batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)]
|
| 127 |
+
|
| 128 |
+
results = []
|
| 129 |
+
for batch in tqdm.tqdm(batches, desc="Processing frames"):
|
| 130 |
+
|
| 131 |
+
# preprocess images
|
| 132 |
+
inputs = image_processor(images=batch, return_tensors="pt")
|
| 133 |
+
inputs = inputs.to(device).to(TORCH_DTYPE)
|
| 134 |
+
|
| 135 |
+
# forward pass
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
outputs = model(**inputs)
|
| 138 |
+
|
| 139 |
+
# postprocess outputs
|
| 140 |
+
if target_size:
|
| 141 |
+
target_sizes = [target_size] * len(batch)
|
| 142 |
+
else:
|
| 143 |
+
target_sizes = [(image.shape[0], image.shape[1]) for image in batch]
|
| 144 |
+
|
| 145 |
+
batch_results = image_processor.post_process_object_detection(
|
| 146 |
+
outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
results.extend(batch_results)
|
| 150 |
+
|
| 151 |
+
# move results to cpu
|
| 152 |
+
for i, result in enumerate(results):
|
| 153 |
+
results[i] = {k: v.cpu() for k, v in result.items()}
|
| 154 |
+
if keep_ids is not None:
|
| 155 |
+
keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
|
| 156 |
+
results[i] = {k: v[keep] for k, v in results[i].items()}
|
| 157 |
+
|
| 158 |
+
return results, model.config.id2label
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def process_image(
|
| 162 |
+
checkpoint: str = DEFAULT_CHECKPOINT,
|
| 163 |
+
image: Optional[Image.Image] = None,
|
| 164 |
+
url: Optional[str] = None,
|
| 165 |
+
use_url: bool = False,
|
| 166 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 167 |
+
):
|
| 168 |
+
if not use_url:
|
| 169 |
+
url = None
|
| 170 |
+
|
| 171 |
+
if (image is None) ^ bool(url):
|
| 172 |
+
raise ValueError(f"Either image or url must be provided, but not both.")
|
| 173 |
+
|
| 174 |
+
if url:
|
| 175 |
+
image = load_image(url)
|
| 176 |
+
|
| 177 |
+
results, id2label = detect_objects(
|
| 178 |
+
checkpoint=checkpoint,
|
| 179 |
+
images=[np.array(image)],
|
| 180 |
+
confidence_threshold=confidence_threshold,
|
| 181 |
+
)
|
| 182 |
+
result = results[0] # first image in batch (we have batch size 1)
|
| 183 |
+
|
| 184 |
+
annotations = []
|
| 185 |
+
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
|
| 186 |
+
text_label = id2label[label.item()]
|
| 187 |
+
formatted_label = f"{text_label} ({score:.2f})"
|
| 188 |
+
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
|
| 189 |
+
x_min = max(0, x_min)
|
| 190 |
+
y_min = max(0, y_min)
|
| 191 |
+
x_max = min(image.width - 1, x_max)
|
| 192 |
+
y_max = min(image.height - 1, y_max)
|
| 193 |
+
annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
|
| 194 |
+
|
| 195 |
+
return (image, annotations)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def get_target_size(image_height, image_width, max_size: int):
|
| 199 |
+
if image_height < max_size and image_width < max_size:
|
| 200 |
+
new_height, new_width = image_height, image_width
|
| 201 |
+
elif image_height > image_width:
|
| 202 |
+
new_height = max_size
|
| 203 |
+
new_width = int(image_width * max_size / image_height)
|
| 204 |
+
else:
|
| 205 |
+
new_width = max_size
|
| 206 |
+
new_height = int(image_height * max_size / image_width)
|
| 207 |
+
|
| 208 |
+
# make even (for video codec compatibility)
|
| 209 |
+
new_height = new_height // 2 * 2
|
| 210 |
+
new_width = new_width // 2 * 2
|
| 211 |
+
|
| 212 |
+
return new_width, new_height
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
|
| 216 |
+
cap = cv2.VideoCapture(video_path)
|
| 217 |
+
frames = []
|
| 218 |
+
i = 0
|
| 219 |
+
progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
|
| 220 |
+
while cap.isOpened() and len(frames) < k:
|
| 221 |
+
ret, frame = cap.read()
|
| 222 |
+
if not ret:
|
| 223 |
+
break
|
| 224 |
+
if i % read_every_i_frame == 0:
|
| 225 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 226 |
+
progress_bar.update(1)
|
| 227 |
+
i += 1
|
| 228 |
+
cap.release()
|
| 229 |
+
progress_bar.close()
|
| 230 |
+
return frames
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def get_tracker(tracker: str, fps: float):
|
| 234 |
+
if tracker == TrackingAlgorithm.SORT:
|
| 235 |
+
return trackers.SORTTracker(frame_rate=fps)
|
| 236 |
+
elif tracker == TrackingAlgorithm.DEEPSORT:
|
| 237 |
+
feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
|
| 238 |
+
return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
|
| 239 |
+
elif tracker == TrackingAlgorithm.BYTETRACK:
|
| 240 |
+
return sv.ByteTrack(frame_rate=int(fps))
|
| 241 |
+
else:
|
| 242 |
+
raise ValueError(f"Invalid tracker: {tracker}")
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def update_tracker(tracker, detections, frame):
|
| 246 |
+
tracker_name = tracker.__class__.__name__
|
| 247 |
+
if tracker_name == "SORTTracker":
|
| 248 |
+
return tracker.update(detections)
|
| 249 |
+
elif tracker_name == "DeepSORTTracker":
|
| 250 |
+
return tracker.update(detections, frame)
|
| 251 |
+
elif tracker_name == "ByteTrack":
|
| 252 |
+
return tracker.update_with_detections(detections)
|
| 253 |
+
else:
|
| 254 |
+
raise ValueError(f"Invalid tracker: {tracker}")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def process_video(
|
| 258 |
+
video_path: str,
|
| 259 |
+
checkpoint: str,
|
| 260 |
+
tracker_algorithm: Optional[str] = None,
|
| 261 |
+
classes: str = "all",
|
| 262 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
| 263 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 264 |
+
) -> str:
|
| 265 |
+
|
| 266 |
+
if not video_path or not os.path.isfile(video_path):
|
| 267 |
+
raise ValueError(f"Invalid video path: {video_path}")
|
| 268 |
+
|
| 269 |
+
ext = os.path.splitext(video_path)[1].lower()
|
| 270 |
+
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
| 271 |
+
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
|
| 272 |
+
|
| 273 |
+
video_info = sv.VideoInfo.from_video_path(video_path)
|
| 274 |
+
read_each_i_frame = max(1, video_info.fps // 25)
|
| 275 |
+
target_fps = video_info.fps / read_each_i_frame
|
| 276 |
+
target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)
|
| 277 |
+
|
| 278 |
+
n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
|
| 279 |
+
frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
|
| 280 |
+
frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
|
| 281 |
+
|
| 282 |
+
# Set the color lookup mode to assign colors by track ID
|
| 283 |
+
# This mean objects with the same track ID will be annotated by the same color
|
| 284 |
+
color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS
|
| 285 |
+
|
| 286 |
+
box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
|
| 287 |
+
label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
|
| 288 |
+
trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100)
|
| 289 |
+
|
| 290 |
+
# preprocess classes
|
| 291 |
+
if classes != "all":
|
| 292 |
+
classes_list = [cls.strip().lower() for cls in classes.split(",")]
|
| 293 |
+
else:
|
| 294 |
+
classes_list = None
|
| 295 |
+
|
| 296 |
+
results, id2label = detect_objects(
|
| 297 |
+
images=np.array(frames),
|
| 298 |
+
checkpoint=checkpoint,
|
| 299 |
+
confidence_threshold=confidence_threshold,
|
| 300 |
+
target_size=(target_height, target_width),
|
| 301 |
+
classes=classes_list,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
annotated_frames = []
|
| 306 |
+
|
| 307 |
+
# detections
|
| 308 |
+
if tracker_algorithm:
|
| 309 |
+
tracker = get_tracker(tracker_algorithm, target_fps)
|
| 310 |
+
for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
|
| 311 |
+
detections = sv.Detections.from_transformers(result, id2label=id2label)
|
| 312 |
+
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
|
| 313 |
+
detections = update_tracker(tracker, detections, frame)
|
| 314 |
+
labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
|
| 315 |
+
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
|
| 316 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
| 317 |
+
annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
|
| 318 |
+
annotated_frames.append(annotated_frame)
|
| 319 |
+
|
| 320 |
+
else:
|
| 321 |
+
for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
|
| 322 |
+
detections = sv.Detections.from_transformers(result, id2label=id2label)
|
| 323 |
+
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
|
| 324 |
+
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
|
| 325 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
|
| 326 |
+
annotated_frames.append(annotated_frame)
|
| 327 |
+
|
| 328 |
+
output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
|
| 329 |
+
iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
|
| 330 |
+
return output_filename
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def create_image_inputs() -> List[gr.components.Component]:
|
| 335 |
+
return [
|
| 336 |
+
gr.Image(
|
| 337 |
+
label="Upload Image",
|
| 338 |
+
type="pil",
|
| 339 |
+
sources=["upload", "webcam"],
|
| 340 |
+
interactive=True,
|
| 341 |
+
elem_classes="input-component",
|
| 342 |
+
),
|
| 343 |
+
gr.Checkbox(label="Use Image URL Instead", value=False),
|
| 344 |
+
gr.Textbox(
|
| 345 |
+
label="Image URL",
|
| 346 |
+
placeholder="https://example.com/image.jpg",
|
| 347 |
+
visible=False,
|
| 348 |
+
elem_classes="input-component",
|
| 349 |
+
),
|
| 350 |
+
gr.Dropdown(
|
| 351 |
+
choices=CHECKPOINTS,
|
| 352 |
+
label="Select Model Checkpoint",
|
| 353 |
+
value=DEFAULT_CHECKPOINT,
|
| 354 |
+
elem_classes="input-component",
|
| 355 |
+
),
|
| 356 |
+
gr.Slider(
|
| 357 |
+
minimum=0.1,
|
| 358 |
+
maximum=1.0,
|
| 359 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
| 360 |
+
step=0.1,
|
| 361 |
+
label="Confidence Threshold",
|
| 362 |
+
elem_classes="input-component",
|
| 363 |
+
),
|
| 364 |
+
]
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def create_video_inputs() -> List[gr.components.Component]:
|
| 368 |
+
return [
|
| 369 |
+
gr.Video(
|
| 370 |
+
label="Upload Video",
|
| 371 |
+
sources=["upload"],
|
| 372 |
+
interactive=True,
|
| 373 |
+
format="mp4", # Ensure MP4 format
|
| 374 |
+
elem_classes="input-component",
|
| 375 |
+
),
|
| 376 |
+
gr.Dropdown(
|
| 377 |
+
choices=CHECKPOINTS,
|
| 378 |
+
label="Select Model Checkpoint",
|
| 379 |
+
value=DEFAULT_CHECKPOINT,
|
| 380 |
+
elem_classes="input-component",
|
| 381 |
+
),
|
| 382 |
+
gr.Dropdown(
|
| 383 |
+
choices=TRACKERS,
|
| 384 |
+
label="Select Tracker (Optional)",
|
| 385 |
+
value=None,
|
| 386 |
+
elem_classes="input-component",
|
| 387 |
+
),
|
| 388 |
+
gr.TextArea(
|
| 389 |
+
label="Specify Class Names to Detect (comma separated)",
|
| 390 |
+
value="all",
|
| 391 |
+
lines=1,
|
| 392 |
+
elem_classes="input-component",
|
| 393 |
+
),
|
| 394 |
+
gr.Slider(
|
| 395 |
+
minimum=0.1,
|
| 396 |
+
maximum=1.0,
|
| 397 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
| 398 |
+
step=0.1,
|
| 399 |
+
label="Confidence Threshold",
|
| 400 |
+
elem_classes="input-component",
|
| 401 |
+
),
|
| 402 |
+
]
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def create_button_row() -> List[gr.Button]:
|
| 406 |
+
return [
|
| 407 |
+
gr.Button(
|
| 408 |
+
f"Detect Objects", variant="primary", elem_classes="action-button"
|
| 409 |
+
),
|
| 410 |
+
gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
|
| 411 |
+
]
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# Gradio interface
|
| 415 |
+
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 416 |
+
gr.Markdown(
|
| 417 |
+
"""
|
| 418 |
+
# Object Detection Demo
|
| 419 |
+
Experience state-of-the-art object detection with USTC's [D-FINE](https://huggingface.co/docs/transformers/main/model_doc/d_fine) models.
|
| 420 |
+
- **Image** and **Video** modes are supported.
|
| 421 |
+
- Select a model and adjust the confidence threshold to see detections!
|
| 422 |
+
- On video mode, you can enable tracking powered by [Supervision](https://github.com/roboflow/supervision) and [Trackers](https://github.com/roboflow/trackers) from Roboflow.
|
| 423 |
+
""",
|
| 424 |
+
elem_classes="header-text",
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
with gr.Tabs():
|
| 428 |
+
with gr.Tab("Image"):
|
| 429 |
+
with gr.Row():
|
| 430 |
+
with gr.Column(scale=1, min_width=300):
|
| 431 |
+
with gr.Group():
|
| 432 |
+
(
|
| 433 |
+
image_input,
|
| 434 |
+
use_url,
|
| 435 |
+
url_input,
|
| 436 |
+
image_model_checkpoint,
|
| 437 |
+
image_confidence_threshold,
|
| 438 |
+
) = create_image_inputs()
|
| 439 |
+
image_detect_button, image_clear_button = create_button_row()
|
| 440 |
+
with gr.Column(scale=2):
|
| 441 |
+
image_output = gr.AnnotatedImage(
|
| 442 |
+
label="Detection Results",
|
| 443 |
+
show_label=True,
|
| 444 |
+
color_map=None,
|
| 445 |
+
elem_classes="output-component",
|
| 446 |
+
)
|
| 447 |
+
gr.Examples(
|
| 448 |
+
examples=[
|
| 449 |
+
[
|
| 450 |
+
DEFAULT_CHECKPOINT,
|
| 451 |
+
example["path"],
|
| 452 |
+
example["url"],
|
| 453 |
+
example["use_url"],
|
| 454 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 455 |
+
]
|
| 456 |
+
for example in IMAGE_EXAMPLES
|
| 457 |
+
],
|
| 458 |
+
inputs=[
|
| 459 |
+
image_model_checkpoint,
|
| 460 |
+
image_input,
|
| 461 |
+
url_input,
|
| 462 |
+
use_url,
|
| 463 |
+
image_confidence_threshold,
|
| 464 |
+
],
|
| 465 |
+
outputs=[image_output],
|
| 466 |
+
fn=process_image,
|
| 467 |
+
label="Select an image example to populate inputs",
|
| 468 |
+
cache_examples=True,
|
| 469 |
+
cache_mode="lazy",
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
with gr.Tab("Video"):
|
| 473 |
+
gr.Markdown(
|
| 474 |
+
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
|
| 475 |
+
)
|
| 476 |
+
with gr.Row():
|
| 477 |
+
with gr.Column(scale=1, min_width=300):
|
| 478 |
+
with gr.Group():
|
| 479 |
+
video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
|
| 480 |
+
video_detect_button, video_clear_button = create_button_row()
|
| 481 |
+
with gr.Column(scale=2):
|
| 482 |
+
video_output = gr.Video(
|
| 483 |
+
label="Detection Results",
|
| 484 |
+
format="mp4", # Explicit MP4 format
|
| 485 |
+
elem_classes="output-component",
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
gr.Examples(
|
| 489 |
+
examples=[
|
| 490 |
+
[example["path"], DEFAULT_CHECKPOINT, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
|
| 491 |
+
for example in VIDEO_EXAMPLES
|
| 492 |
+
],
|
| 493 |
+
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
|
| 494 |
+
outputs=[video_output],
|
| 495 |
+
fn=process_video,
|
| 496 |
+
cache_examples=False,
|
| 497 |
+
label="Select a video example to populate inputs",
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
# Dynamic visibility for URL input
|
| 501 |
+
use_url.change(
|
| 502 |
+
fn=lambda x: gr.update(visible=x),
|
| 503 |
+
inputs=use_url,
|
| 504 |
+
outputs=url_input,
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
# Image clear button
|
| 508 |
+
image_clear_button.click(
|
| 509 |
+
fn=lambda: (
|
| 510 |
+
None,
|
| 511 |
+
False,
|
| 512 |
+
"",
|
| 513 |
+
DEFAULT_CHECKPOINT,
|
| 514 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 515 |
+
None,
|
| 516 |
+
),
|
| 517 |
+
outputs=[
|
| 518 |
+
image_input,
|
| 519 |
+
use_url,
|
| 520 |
+
url_input,
|
| 521 |
+
image_model_checkpoint,
|
| 522 |
+
image_confidence_threshold,
|
| 523 |
+
image_output,
|
| 524 |
+
],
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
# Video clear button
|
| 528 |
+
video_clear_button.click(
|
| 529 |
+
fn=lambda: (
|
| 530 |
+
None,
|
| 531 |
+
DEFAULT_CHECKPOINT,
|
| 532 |
+
None,
|
| 533 |
+
"all",
|
| 534 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
| 535 |
+
None,
|
| 536 |
+
),
|
| 537 |
+
outputs=[
|
| 538 |
+
video_input,
|
| 539 |
+
video_checkpoint,
|
| 540 |
+
video_tracker,
|
| 541 |
+
video_classes,
|
| 542 |
+
video_confidence_threshold,
|
| 543 |
+
video_output,
|
| 544 |
+
],
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
# Image detect button
|
| 548 |
+
image_detect_button.click(
|
| 549 |
+
fn=process_image,
|
| 550 |
+
inputs=[
|
| 551 |
+
image_model_checkpoint,
|
| 552 |
+
image_input,
|
| 553 |
+
url_input,
|
| 554 |
+
use_url,
|
| 555 |
+
image_confidence_threshold,
|
| 556 |
+
],
|
| 557 |
+
outputs=[image_output],
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# Video detect button
|
| 561 |
+
video_detect_button.click(
|
| 562 |
+
fn=process_video,
|
| 563 |
+
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
|
| 564 |
+
outputs=[video_output],
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
demo.queue(max_size=20).launch()
|
gitattributes (2)
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ruff_cache
|
| 2 |
+
.venv
|
| 3 |
+
static
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements (3).txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers @ git+https://github.com/huggingface/transformers
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
opencv-python-headless
|
| 6 |
+
ffmpeg-python
|
| 7 |
+
tqdm
|
| 8 |
+
pillow
|
| 9 |
+
supervision
|
| 10 |
+
trackers[deepsort] @ git+https://github.com/roboflow/trackers
|
| 11 |
+
spaces
|
| 12 |
+
imageio[pyav]
|