Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,43 +20,59 @@ class RefinementOutput(BaseModel):
|
|
| 20 |
|
| 21 |
class PromptRefiner:
|
| 22 |
def __init__(self, api_token: str):
|
| 23 |
-
self.client = InferenceClient(token=api_token,timeout=300)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
elif prompt_input.meta_prompt_choice == "star":
|
| 37 |
-
selected_meta_prompt = echo_prompt_refiner
|
| 38 |
-
elif prompt_input.meta_prompt_choice == "math":
|
| 39 |
-
selected_meta_prompt = math_meta_prompt
|
| 40 |
-
elif prompt_input.meta_prompt_choice == "arpe":
|
| 41 |
-
selected_meta_prompt = autoregressive_metaprompt
|
| 42 |
-
else:
|
| 43 |
-
selected_meta_prompt = advanced_meta_prompt
|
| 44 |
-
|
| 45 |
-
messages = [
|
| 46 |
-
{"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
|
| 47 |
-
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
|
| 48 |
-
]
|
| 49 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
response = self.client.chat_completion(
|
| 51 |
model=prompt_refiner_model,
|
| 52 |
messages=messages,
|
| 53 |
max_tokens=2000,
|
| 54 |
temperature=0.8
|
| 55 |
)
|
|
|
|
| 56 |
response_content = response.choices[0].message.content.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
except HfHubHTTPError as e:
|
| 58 |
return (
|
| 59 |
-
"Error: Model timeout. Please again later.",
|
| 60 |
"",
|
| 61 |
"The selected model is currently experiencing high traffic.",
|
| 62 |
{}
|
|
@@ -68,49 +84,67 @@ class PromptRefiner:
|
|
| 68 |
"An unexpected error occurred.",
|
| 69 |
{}
|
| 70 |
)
|
|
|
|
|
|
|
| 71 |
try:
|
|
|
|
| 72 |
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
| 73 |
if json_match:
|
| 74 |
json_str = json_match.group(1)
|
| 75 |
json_str = re.sub(r'\n\s*', ' ', json_str)
|
| 76 |
json_str = json_str.replace('"', '\\"')
|
| 77 |
json_output = json.loads(f'"{json_str}"')
|
|
|
|
| 78 |
if isinstance(json_output, str):
|
| 79 |
json_output = json.loads(json_output)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
print(f"Raw content: {response_content}")
|
| 89 |
output = {}
|
| 90 |
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
| 91 |
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
| 92 |
match = re.search(pattern, response_content, re.DOTALL)
|
| 93 |
-
if match
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
| 100 |
try:
|
| 101 |
messages = [
|
| 102 |
-
{
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
]
|
|
|
|
| 105 |
response = self.client.chat_completion(
|
| 106 |
model=model,
|
| 107 |
messages=messages,
|
| 108 |
max_tokens=2000,
|
| 109 |
temperature=0.8
|
| 110 |
)
|
|
|
|
| 111 |
output = response.choices[0].message.content.strip()
|
| 112 |
-
|
| 113 |
-
|
| 114 |
except Exception as e:
|
| 115 |
return f"Error: {str(e)}"
|
| 116 |
|
|
|
|
| 20 |
|
| 21 |
class PromptRefiner:
|
| 22 |
def __init__(self, api_token: str):
|
| 23 |
+
self.client = InferenceClient(token=api_token, timeout=300)
|
| 24 |
+
self.meta_prompts = {
|
| 25 |
+
"morphosis": original_meta_prompt,
|
| 26 |
+
"verse": new_meta_prompt,
|
| 27 |
+
"physics": metaprompt1,
|
| 28 |
+
"bolism": loic_metaprompt,
|
| 29 |
+
"done": metadone,
|
| 30 |
+
"star": echo_prompt_refiner,
|
| 31 |
+
"math": math_meta_prompt,
|
| 32 |
+
"arpe": autoregressive_metaprompt
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
try:
|
| 37 |
+
# Select meta prompt using dictionary instead of if-elif chain
|
| 38 |
+
selected_meta_prompt = self.meta_prompts.get(
|
| 39 |
+
prompt_input.meta_prompt_choice,
|
| 40 |
+
advanced_meta_prompt
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
messages = [
|
| 44 |
+
{
|
| 45 |
+
"role": "system",
|
| 46 |
+
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"role": "user",
|
| 50 |
+
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
|
| 51 |
+
}
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
response = self.client.chat_completion(
|
| 55 |
model=prompt_refiner_model,
|
| 56 |
messages=messages,
|
| 57 |
max_tokens=2000,
|
| 58 |
temperature=0.8
|
| 59 |
)
|
| 60 |
+
|
| 61 |
response_content = response.choices[0].message.content.strip()
|
| 62 |
+
|
| 63 |
+
# Parse the response
|
| 64 |
+
result = self._parse_response(response_content)
|
| 65 |
+
|
| 66 |
+
return (
|
| 67 |
+
result.get('initial_prompt_evaluation', ''),
|
| 68 |
+
result.get('refined_prompt', ''),
|
| 69 |
+
result.get('explanation_of_refinements', ''),
|
| 70 |
+
result
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
except HfHubHTTPError as e:
|
| 74 |
return (
|
| 75 |
+
"Error: Model timeout. Please try again later.",
|
| 76 |
"",
|
| 77 |
"The selected model is currently experiencing high traffic.",
|
| 78 |
{}
|
|
|
|
| 84 |
"An unexpected error occurred.",
|
| 85 |
{}
|
| 86 |
)
|
| 87 |
+
|
| 88 |
+
def _parse_response(self, response_content: str) -> dict:
|
| 89 |
try:
|
| 90 |
+
# Try to find JSON in response
|
| 91 |
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
| 92 |
if json_match:
|
| 93 |
json_str = json_match.group(1)
|
| 94 |
json_str = re.sub(r'\n\s*', ' ', json_str)
|
| 95 |
json_str = json_str.replace('"', '\\"')
|
| 96 |
json_output = json.loads(f'"{json_str}"')
|
| 97 |
+
|
| 98 |
if isinstance(json_output, str):
|
| 99 |
json_output = json.loads(json_output)
|
| 100 |
+
|
| 101 |
+
# Clean up JSON values
|
| 102 |
+
return {
|
| 103 |
+
key: value.replace('\\"', '"') if isinstance(value, str) else value
|
| 104 |
+
for key, value in json_output.items()
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
# Fallback to regex parsing if no JSON found
|
|
|
|
| 108 |
output = {}
|
| 109 |
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
| 110 |
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
| 111 |
match = re.search(pattern, response_content, re.DOTALL)
|
| 112 |
+
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
|
| 113 |
+
|
| 114 |
+
return output
|
| 115 |
+
|
| 116 |
+
except (json.JSONDecodeError, ValueError) as e:
|
| 117 |
+
print(f"Error parsing response: {e}")
|
| 118 |
+
print(f"Raw content: {response_content}")
|
| 119 |
+
return {
|
| 120 |
+
"initial_prompt_evaluation": "Error parsing response",
|
| 121 |
+
"refined_prompt": "",
|
| 122 |
+
"explanation_of_refinements": str(e)
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
| 126 |
try:
|
| 127 |
messages = [
|
| 128 |
+
{
|
| 129 |
+
"role": "system",
|
| 130 |
+
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections. Incorporate a variety of lists, headers, and text to make the answer visually appealing"
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"role": "user",
|
| 134 |
+
"content": prompt
|
| 135 |
+
}
|
| 136 |
]
|
| 137 |
+
|
| 138 |
response = self.client.chat_completion(
|
| 139 |
model=model,
|
| 140 |
messages=messages,
|
| 141 |
max_tokens=2000,
|
| 142 |
temperature=0.8
|
| 143 |
)
|
| 144 |
+
|
| 145 |
output = response.choices[0].message.content.strip()
|
| 146 |
+
return output.replace('\n\n', '\n').strip()
|
| 147 |
+
|
| 148 |
except Exception as e:
|
| 149 |
return f"Error: {str(e)}"
|
| 150 |
|