Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,16 +6,6 @@ import gradio as gr
|
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
from typing import Optional, Literal
|
| 8 |
|
| 9 |
-
metaprompt_explanations = {
|
| 10 |
-
"star": "The ECHO (Enhanced Chain of Harmonized Optimization) method, which provides a comprehensive and structured approach to prompt refinement, including multiple stages of analysis, expansion, and synthesis.",
|
| 11 |
-
"done": "A detailed, multi-step approach that emphasizes role-playing, structured output, and various advanced prompting techniques like Chain-of-Thought and Tree of Thoughts.",
|
| 12 |
-
"physics": "A prompt enhancement method that focuses on role-playing, structured output, and incorporating multiple advanced prompting techniques such as Chain-of-Thought and Tree of Thoughts.",
|
| 13 |
-
"morphosis": "A simplified approach that focuses on clear language, logical flow, and essential elements of prompt engineering without complex techniques.",
|
| 14 |
-
"verse": "A structured method that emphasizes analyzing the initial prompt, evaluating its strengths and weaknesses, and refining it with a focus on information flow and versatility.",
|
| 15 |
-
"phor": "An advanced prompt engineering approach that combines multiple techniques, including clarity enhancement, structural improvement, and various specialized prompting methods like Chain-of-Thought and Few-Shot Learning.",
|
| 16 |
-
"bolism": "A prompt refinement method that emphasizes leveraging the autoregressive nature of language models, encouraging reasoning before conclusions, and providing detailed instructions for output formatting."
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
class PromptInput(BaseModel):
|
| 20 |
text: str = Field(..., description="The initial prompt text")
|
| 21 |
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")
|
|
@@ -26,7 +16,6 @@ class RefinementOutput(BaseModel):
|
|
| 26 |
refined_prompt: Optional[str] = None
|
| 27 |
explanation_of_refinements: Optional[str] = None
|
| 28 |
raw_content: Optional[str] = None
|
| 29 |
-
metaprompt_explanation: Optional[str] = None # New field
|
| 30 |
|
| 31 |
class PromptRefiner:
|
| 32 |
def __init__(self, api_token: str):
|
|
@@ -53,10 +42,10 @@ class PromptRefiner:
|
|
| 53 |
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
|
| 54 |
]
|
| 55 |
response = self.client.chat_completion(
|
| 56 |
-
model=
|
| 57 |
messages=messages,
|
| 58 |
-
max_tokens=
|
| 59 |
-
temperature=0.
|
| 60 |
)
|
| 61 |
response_content = response.choices[0].message.content.strip()
|
| 62 |
try:
|
|
@@ -71,10 +60,6 @@ class PromptRefiner:
|
|
| 71 |
for key, value in json_output.items():
|
| 72 |
if isinstance(value, str):
|
| 73 |
json_output[key] = value.replace('\\"', '"')
|
| 74 |
-
|
| 75 |
-
# Add the metaprompt explanation to the output
|
| 76 |
-
json_output['metaprompt_explanation'] = metaprompt_explanations.get(prompt_input.meta_prompt_choice, "")
|
| 77 |
-
|
| 78 |
return RefinementOutput(**json_output, raw_content=response_content)
|
| 79 |
else:
|
| 80 |
raise ValueError("No JSON found in the response")
|
|
@@ -89,10 +74,6 @@ class PromptRefiner:
|
|
| 89 |
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
|
| 90 |
else:
|
| 91 |
output[key] = ""
|
| 92 |
-
|
| 93 |
-
# Add the metaprompt explanation to the output
|
| 94 |
-
output['metaprompt_explanation'] = metaprompt_explanations.get(prompt_input.meta_prompt_choice, "")
|
| 95 |
-
|
| 96 |
return RefinementOutput(**output, raw_content=response_content)
|
| 97 |
|
| 98 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
|
@@ -138,17 +119,14 @@ class GradioInterface:
|
|
| 138 |
gr.Markdown("### Explanation of Refinements")
|
| 139 |
explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")
|
| 140 |
|
| 141 |
-
with gr.Row():
|
| 142 |
-
gr.Markdown("### Metaprompt Explanation")
|
| 143 |
-
metaprompt_explanation = gr.Markdown(label="Metaprompt Explanation")
|
| 144 |
-
|
| 145 |
with gr.Accordion("Full Response JSON", open=False,visible=False):
|
| 146 |
full_response_json = gr.JSON()
|
| 147 |
|
|
|
|
| 148 |
refine_button.click(
|
| 149 |
fn=self.refine_prompt,
|
| 150 |
inputs=[prompt_text, meta_prompt_choice],
|
| 151 |
-
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json
|
| 152 |
)
|
| 153 |
with gr.Row():
|
| 154 |
apply_model = gr.Dropdown(
|
|
@@ -203,8 +181,7 @@ class GradioInterface:
|
|
| 203 |
analysis_evaluation,
|
| 204 |
result.refined_prompt,
|
| 205 |
result.explanation_of_refinements,
|
| 206 |
-
result.dict()
|
| 207 |
-
result.metaprompt_explanation
|
| 208 |
)
|
| 209 |
|
| 210 |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
|
|
|
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
from typing import Optional, Literal
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
class PromptInput(BaseModel):
|
| 10 |
text: str = Field(..., description="The initial prompt text")
|
| 11 |
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism"] = Field(..., description="Choice of meta prompt strategy")
|
|
|
|
| 16 |
refined_prompt: Optional[str] = None
|
| 17 |
explanation_of_refinements: Optional[str] = None
|
| 18 |
raw_content: Optional[str] = None
|
|
|
|
| 19 |
|
| 20 |
class PromptRefiner:
|
| 21 |
def __init__(self, api_token: str):
|
|
|
|
| 42 |
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
|
| 43 |
]
|
| 44 |
response = self.client.chat_completion(
|
| 45 |
+
model=prompt_refiner_model,
|
| 46 |
messages=messages,
|
| 47 |
+
max_tokens=2000,
|
| 48 |
+
temperature=0.8
|
| 49 |
)
|
| 50 |
response_content = response.choices[0].message.content.strip()
|
| 51 |
try:
|
|
|
|
| 60 |
for key, value in json_output.items():
|
| 61 |
if isinstance(value, str):
|
| 62 |
json_output[key] = value.replace('\\"', '"')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
return RefinementOutput(**json_output, raw_content=response_content)
|
| 64 |
else:
|
| 65 |
raise ValueError("No JSON found in the response")
|
|
|
|
| 74 |
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
|
| 75 |
else:
|
| 76 |
output[key] = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return RefinementOutput(**output, raw_content=response_content)
|
| 78 |
|
| 79 |
def apply_prompt(self, prompt: str, model: str) -> str:
|
|
|
|
| 119 |
gr.Markdown("### Explanation of Refinements")
|
| 120 |
explanation_of_refinements = gr.Markdown(label="Explanation of Refinements")
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
with gr.Accordion("Full Response JSON", open=False,visible=False):
|
| 123 |
full_response_json = gr.JSON()
|
| 124 |
|
| 125 |
+
|
| 126 |
refine_button.click(
|
| 127 |
fn=self.refine_prompt,
|
| 128 |
inputs=[prompt_text, meta_prompt_choice],
|
| 129 |
+
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
|
| 130 |
)
|
| 131 |
with gr.Row():
|
| 132 |
apply_model = gr.Dropdown(
|
|
|
|
| 181 |
analysis_evaluation,
|
| 182 |
result.refined_prompt,
|
| 183 |
result.explanation_of_refinements,
|
| 184 |
+
result.dict()
|
|
|
|
| 185 |
)
|
| 186 |
|
| 187 |
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
|