Story_Maker / app.py
badaltry's picture
Create app.py
c2793b4 verified
# app.py β€” Story Generator with Elegant UI
import os, json, re, pathlib, base64, time, uuid
from huggingface_hub import InferenceClient
from PIL import Image
import gradio as gr
# ---------- Config ----------
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise RuntimeError("⚠️ Set HF_TOKEN environment variable (use Spaces Secrets).")
CHAT_MODEL = "meta-llama/Llama-3.1-8b-instruct"
IMAGE_MODEL = "black-forest-labs/FLUX.1-schnell"
SAFETY_MODEL = "meta-llama/Meta-Llama-Guard-2-8B" # Safety model for content moderation
OUT_DIR = pathlib.Path("/tmp/generated")
OUT_DIR.mkdir(parents=True, exist_ok=True)
client = InferenceClient(api_key=HF_TOKEN, provider="auto")
# ---------- Utility ----------
def try_chat_completion(model_id, messages, max_tokens=3000):
r = client.chat.completions.create(model=model_id, messages=messages, max_tokens=max_tokens)
return r.choices[0].message.get("content", "")
def extract_json_from_text(text):
if not text:
return None
match = re.search(r'```json\s*(\{[\s\S]*\})\s*```', text)
if match:
json_str = match.group(1)
else:
match = re.search(r'\{[\s\S]*\}', text)
if not match:
return None
json_str = match.group(0)
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
print(f"--- JSON PARSING FAILED ---\nError: {e}\nContent: {json_str}\n--------------------------")
return None
def hf_text_to_image(model_id, prompt, out_path):
img = client.text_to_image(prompt=prompt, model=model_id)
if isinstance(img, Image.Image):
img.save(out_path)
return out_path
raise RuntimeError("Invalid image response")
def is_content_inappropriate(text_to_check):
"""Uses Llama Guard to check for inappropriate content."""
try:
r = client.chat.completions.create(
model=SAFETY_MODEL,
messages=[{"role": "user", "content": f"Please evaluate if the following content is safe or unsafe based on typical safety guidelines for an AI assistant. Output 'safe' or 'unsafe'.\n\nContent: \"{text_to_check}\""}],
max_tokens=20,
temperature=0.1
)
response = r.choices[0].message.get("content", "").lower()
return "unsafe" in response
except Exception as e:
print(f"Error in safety check: {e}")
return False
# ---------- Story logic ----------
def make_prompt(user_prompt, nscenes=6, nsent=5):
# This prompt is excellent and requires no changes.
return f"""
You are a creative story writer. Your task is to write a compelling story based on a user's prompt.
You MUST return the story in a single, valid JSON object. Do not write any text or explanations outside of the JSON structure.
Here is an example of the required JSON format:
{{
"title": "A descriptive title for the entire story",
"scenes": [
{{
"id": 1,
"text": "The full story text for this scene. This should be a complete paragraph with around {nsent} sentences, describing the events and setting.",
"visual_prompt": "A detailed, vivid description for an image generation model, capturing the key visual elements of this scene."
}}
]
}}
Please use the following details for the story:
- Story Prompt: "{user_prompt}"
- Total number of scenes: {nscenes}
Now, generate the story in the specified JSON format.
"""
def generate_story_and_images(prompt, nscenes, nsent, img_model):
start = time.time()
logs = []
logs.append("🎬 Generating story...")
raw = try_chat_completion(CHAT_MODEL, [{"role": "user", "content": make_prompt(prompt, nscenes, nsent)}])
story = extract_json_from_text(raw)
if not story:
story = {"title": "Untitled", "scenes": [{"id": i + 1, "text": f"Scene {i+1}. The AI failed to generate a proper story, or the JSON was malformed.", "visual_prompt": prompt} for i in range(nscenes)]}
logs.append("⚠️ Failed to parse story JSON, using fallback.")
else:
logs.append("βœ… Story JSON parsed.")
image_paths = []
for s in story["scenes"]:
visual_prompt = s.get("visual_prompt", s.get("text", prompt))
if is_content_inappropriate(visual_prompt):
gr.Warning(f"Visual prompt for Scene {s['id']} was moderated for safety. Generating a default image.")
visual_prompt = "A serene landscape with gentle colors."
name = OUT_DIR / f"{uuid.uuid4().hex[:6]}_scene_{s['id']}.png"
logs.append(f"🎨 Generating image for Scene {s['id']}...")
hf_text_to_image(img_model, visual_prompt, str(name))
image_paths.append(str(name))
total = time.time() - start
logs.append(f"✨ Done in {total:.2f}s")
return story, image_paths, "\n".join(logs)
# ---------- UI ----------
def build_ui():
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.prompt-section { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 32px; border-radius: 16px; margin-bottom: 24px; }
.prompt-box textarea { font-size: 16px !important; }
.story-panel { background: rgba(255,255,255,0.05); padding: 24px; border-radius: 12px; backdrop-filter: blur(10px); border: 1px solid rgba(255,255,255,0.1); max-height: 800px; overflow-y: auto; }
.story-title { font-size: 32px; font-weight: 700; margin-bottom: 24px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; }
.story-content { line-height: 1.8; font-size: 16px; color: rgba(255,255,255,0.9); }
.story-content p { margin-bottom: 16px; }
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="Story Generator") as demo:
gr.Markdown("# πŸ“š AI Story Generator", elem_classes="main-title")
with gr.Column(elem_classes="main-container"):
with gr.Column(elem_classes="prompt-section"):
prompt_box = gr.Textbox(label="✨ Enter your story idea", placeholder="e.g. A pirate discovering a hidden island...", lines=3, elem_classes="prompt-box")
with gr.Row():
generate_btn = gr.Button("πŸš€ Generate Story", variant="primary", size="lg", scale=3)
with gr.Column(scale=1):
with gr.Accordion("βš™οΈ Settings", open=False):
nscenes = gr.Slider(2, 12, value=6, step=1, label="πŸ“– Number of scenes")
nsent = gr.Slider(2, 8, value=5, step=1, label="πŸ“ Sentences per scene")
img_model = gr.Dropdown(choices=[IMAGE_MODEL], value=IMAGE_MODEL, label="🎨 Image model")
log_box = gr.Textbox(label="πŸ“‹ Generation Logs", lines=6, interactive=False)
with gr.Row():
with gr.Column(scale=5, elem_classes="story-panel"):
story_html = gr.HTML("<div style='text-align:center;padding:40px;color:#888;'>Your story will appear here...<br><br>Click 'Generate Story' to begin! ✨</div>")
with gr.Column(scale=7):
image_gallery = gr.Gallery(
label="πŸ“· Scene Visuals", show_label=False, elem_id="gallery",
columns=2, object_fit="cover", height="auto", preview=True
)
def on_generate(prompt, nscenes, nsent, img_model):
if is_content_inappropriate(prompt):
gr.Warning("Your prompt seems to violate the safety policy. Please try again.")
return "<div style='text-align:center;padding:40px;color:#888;'>Prompt rejected due to safety policy.</div>", [], "Prompt rejected by safety filter."
story, imgs, logs = generate_story_and_images(prompt, int(nscenes), int(nsent), img_model)
story_output_html = f"<div class='story-title'>{story.get('title', 'Untitled')}</div>\n<div class='story-content'>\n"
for s in story.get('scenes', []):
scene_text = s.get('text', '')
if is_content_inappropriate(scene_text):
scene_text = f"**[Scene {s['id']} was moderated for safety and replaced with a placeholder.]**"
gr.Info(f"Scene {s['id']} content was flagged and replaced.")
story_output_html += f"<p>{scene_text}</p>\n\n"
story_output_html += "</div>"
return story_output_html, imgs, logs
generate_btn.click(
on_generate,
inputs=[prompt_box, nscenes, nsent, img_model],
outputs=[story_html, image_gallery, log_box]
)
return demo
app = build_ui()
if __name__ == "__main__":
app.launch()