Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,49 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
import os
|
| 4 |
-
import numpy as np
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# define dialect mapping
|
|
|
|
| 10 |
dialect_mapping = {
|
| 11 |
"MSA": "Modern Standard Arabic (MSA) - العربية الفصحى الحديثة",
|
| 12 |
-
"Egyptian": "Egyptian Arabic - اللهجة المصرية العامية",
|
| 13 |
-
"Gulf": "Peninsular Arabic - لهجة الجزيرة العربية",
|
| 14 |
-
"Levantine": "Levantine Arabic - لهجة بلاد الشام",
|
| 15 |
-
"Maghrebi": "Maghrebi Arabic - اللهجة المغاربية"
|
| 16 |
-
}
|
| 17 |
-
|
| 18 |
-
@spaces.GPU
|
| 19 |
-
def predict_dialect(audio):
|
| 20 |
-
# load model inside the GPU function
|
| 21 |
-
print("Loading model on GPU...")
|
| 22 |
-
model_id = "badrex/mms-300m-arabic-dialect-identifier"
|
| 23 |
-
classifier = pipeline("audio-classification", model=model_id) # no device specified
|
| 24 |
-
print("Model loaded successfully")
|
| 25 |
-
|
| 26 |
if audio is None:
|
| 27 |
return {"Error": 1.0}
|
| 28 |
|
|
|
|
| 29 |
sr, audio_array = audio
|
| 30 |
|
|
|
|
| 31 |
if len(audio_array.shape) > 1:
|
| 32 |
audio_array = audio_array.mean(axis=1)
|
| 33 |
|
|
|
|
| 34 |
if audio_array.dtype != np.float32:
|
|
|
|
| 35 |
if audio_array.dtype == np.int16:
|
| 36 |
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 37 |
else:
|
| 38 |
-
audio_array = audio_array.astype(np.float32)
|
| 39 |
|
| 40 |
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
predictions =
|
| 44 |
|
| 45 |
-
|
| 46 |
results = {}
|
| 47 |
for pred in predictions:
|
| 48 |
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
|
| 49 |
-
results[dialect_name] = float(pred['score'])
|
| 50 |
|
| 51 |
return results
|
| 52 |
|
|
@@ -57,25 +54,16 @@ if os.path.exists(examples_dir):
|
|
| 57 |
for filename in os.listdir(examples_dir):
|
| 58 |
if filename.endswith((".wav", ".mp3", ".ogg")):
|
| 59 |
examples.append([os.path.join(examples_dir, filename)])
|
|
|
|
| 60 |
print(f"Found {len(examples)} example files")
|
|
|
|
|
|
|
| 61 |
|
|
|
|
| 62 |
description = """
|
| 63 |
By <a href="https://badrex.github.io/">Badr Alabsi</a> with ❤️🤍💚
|
| 64 |
|
| 65 |
-
This demo
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
demo = gr.Interface(
|
| 70 |
-
fn=predict_dialect,
|
| 71 |
-
inputs=gr.Audio(),
|
| 72 |
-
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"),
|
| 73 |
-
title="Tamyïz 🍉 Arabic Dialect Identification in Speech",
|
| 74 |
-
description=description,
|
| 75 |
-
examples=examples if examples else None,
|
| 76 |
-
cache_examples=False,
|
| 77 |
-
flagging_mode=None
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
print("=== Launching demo ===")
|
| 81 |
-
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
|
|
|
|
|
|
|
|
|
| 2 |
import spaces
|
| 3 |
|
| 4 |
+
# load the model
|
| 5 |
+
print("Loading model...")
|
| 6 |
+
model_id = "badrex/mms-300m-arabic-dialect-identifier"
|
| 7 |
+
classifier = pipeline("audio-classification", model=model_id, device='cuda')
|
| 8 |
+
print("Model loaded successfully")
|
| 9 |
+
print("Model moved to GPU successfully")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@spaces.GPU
|
| 13 |
+
def predict(audio_segment, sr=16000):
|
| 14 |
+
return classifier({"sampling_rate": sr, "raw": audio_segment})
|
| 15 |
|
| 16 |
# define dialect mapping
|
| 17 |
+
|
| 18 |
dialect_mapping = {
|
| 19 |
"MSA": "Modern Standard Arabic (MSA) - العربية الفصحى الحديثة",
|
| 20 |
+
"Egyptian": "Egyptian Arabic - اللهجة المصرية العامية",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
if audio is None:
|
| 22 |
return {"Error": 1.0}
|
| 23 |
|
| 24 |
+
|
| 25 |
sr, audio_array = audio
|
| 26 |
|
| 27 |
+
|
| 28 |
if len(audio_array.shape) > 1:
|
| 29 |
audio_array = audio_array.mean(axis=1)
|
| 30 |
|
| 31 |
+
|
| 32 |
if audio_array.dtype != np.float32:
|
| 33 |
+
|
| 34 |
if audio_array.dtype == np.int16:
|
| 35 |
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 36 |
else:
|
|
|
|
| 37 |
|
| 38 |
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
|
| 39 |
|
| 40 |
+
|
| 41 |
+
predictions = predict(sr=sr, audio_segment=audio_array)
|
| 42 |
|
| 43 |
+
|
| 44 |
results = {}
|
| 45 |
for pred in predictions:
|
| 46 |
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
|
|
|
|
| 47 |
|
| 48 |
return results
|
| 49 |
|
|
|
|
| 54 |
for filename in os.listdir(examples_dir):
|
| 55 |
if filename.endswith((".wav", ".mp3", ".ogg")):
|
| 56 |
examples.append([os.path.join(examples_dir, filename)])
|
| 57 |
+
|
| 58 |
print(f"Found {len(examples)} example files")
|
| 59 |
+
else:
|
| 60 |
+
print("Examples directory not found")
|
| 61 |
|
| 62 |
+
# clean description without problematic HTML
|
| 63 |
description = """
|
| 64 |
By <a href="https://badrex.github.io/">Badr Alabsi</a> with ❤️🤍💚
|
| 65 |
|
| 66 |
+
This is a demo for the accurate and robust Transformer-based <a href="https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier">model</a> for Spoken Arabic Dialect Identification (ADI).
|
| 67 |
+
From just a short audio clip (5-10 seconds), the model can identify Modern Standard Arabic (MSA) as well as four major regional Arabic varieties: Egyptian Arabic, Peninsular Arabic (Gulf, Yemeni, and Iraqi), Levantine Arabic, and Maghrebi Arabic.
|
| 68 |
+
|
| 69 |
+
Simply **upload an audio file** 📤 or **record yourself speaking** 🎙️⏺️ to try out the model!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|