Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| from io import BytesIO | |
| from typing import Optional, Tuple, Dict, Any, Iterable | |
| import fitz | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| Qwen3VLForConditionalGeneration, | |
| AutoTokenizer, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| import shlex | |
| import subprocess | |
| subprocess.run(shlex.split("pip install flash-attn --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True) | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # # Load Qwen2.5-VL-7B-Instruct | |
| # MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct" | |
| # processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| # model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| # MODEL_ID_M, | |
| # trust_remote_code=True, | |
| # torch_dtype=torch.float16).to(device).eval() | |
| # # Load Qwen2.5-VL-3B-Instruct | |
| # MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct" | |
| # processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| # model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| # MODEL_ID_X, | |
| # trust_remote_code=True, | |
| # torch_dtype=torch.float16).to(device).eval() | |
| # Load Qwen3-VL-4B-Instruct | |
| MODEL_ID_Q = "Qwen/Qwen3-VL-4B-Instruct" | |
| processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True) | |
| model_q = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16).to(device).eval() | |
| # Load Qwen3-VL-8B-Instruct | |
| MODEL_ID_Y = "Qwen/Qwen3-VL-8B-Instruct" | |
| processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
| model_y = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Y, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16).to(device).eval() | |
| # # Load Qwen3-VL-8B-Thinking | |
| # MODEL_ID_Z = "Qwen/Qwen3-VL-8B-Thinking" | |
| # processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True) | |
| # model_z = Qwen3VLForConditionalGeneration.from_pretrained( | |
| # MODEL_ID_Z, | |
| # trust_remote_code=True, | |
| # torch_dtype=torch.bfloat16).to(device).eval() | |
| # Load Qwen3-VL-2B-Instruct | |
| MODEL_ID_L = "Qwen/Qwen3-VL-2B-Instruct" | |
| processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True) | |
| model_l = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_L, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16).to(device).eval() | |
| # Load Qwen3-VL-2B-Thinking | |
| MODEL_ID_J = "Qwen/Qwen3-VL-2B-Thinking" | |
| processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True) | |
| model_j = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_J, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16).to(device).eval() | |
| # Load Qwen3-VL-4B-Thinking | |
| MODEL_ID_T = "Qwen/Qwen3-VL-4B-Thinking" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_T, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16).to(device).eval() | |
| def convert_pdf_to_images(file_path: str, dpi: int = 128): | |
| if not file_path: | |
| return [] | |
| images = [] | |
| pdf_document = fitz.open(file_path) | |
| zoom = dpi / 72.0 | |
| mat = fitz.Matrix(zoom, zoom) | |
| for page_num in range(len(pdf_document)): | |
| page = pdf_document.load_page(page_num) | |
| pix = page.get_pixmap(matrix=mat) | |
| img_data = pix.tobytes("png") | |
| images.append(Image.open(BytesIO(img_data))) | |
| pdf_document.close() | |
| return images | |
| def get_initial_pdf_state() -> Dict[str, Any]: | |
| return {"pages": [], "total_pages": 0, "current_page_index": 0} | |
| def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]: | |
| state = get_initial_pdf_state() | |
| if not file_path: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| try: | |
| pages = convert_pdf_to_images(file_path) | |
| if not pages: | |
| return None, state, '<div style="text-align:center;">Could not load file</div>' | |
| state["pages"] = pages | |
| state["total_pages"] = len(pages) | |
| page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>' | |
| return pages[0], state, page_info_html | |
| except Exception as e: | |
| return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>' | |
| def navigate_pdf_page(direction: str, state: Dict[str, Any]): | |
| if not state or not state["pages"]: | |
| return None, state, '<div style="text-align:center;">No file loaded</div>' | |
| current_index = state["current_page_index"] | |
| total_pages = state["total_pages"] | |
| if direction == "prev": | |
| new_index = max(0, current_index - 1) | |
| elif direction == "next": | |
| new_index = min(total_pages - 1, current_index + 1) | |
| else: | |
| new_index = current_index | |
| state["current_page_index"] = new_index | |
| image_preview = state["pages"][new_index] | |
| page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>' | |
| return image_preview, state, page_info_html | |
| def downsample_video(video_path): | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| frames.append(pil_image) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for image input. | |
| """ | |
| # if model_name == "Qwen2.5-VL-7B-Instruct": | |
| # processor, model = processor_m, model_m | |
| # elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| # processor, model = processor_x, model_x | |
| if model_name == "Qwen3-VL-4B-Instruct": | |
| processor, model = processor_q, model_q | |
| elif model_name == "Qwen3-VL-8B-Instruct": | |
| processor, model = processor_y, model_y | |
| # elif model_name == "Qwen3-VL-8B-Thinking": | |
| # processor, model = processor_z, model_z | |
| elif model_name == "Qwen3-VL-4B-Thinking": | |
| processor, model = processor_t, model_t | |
| elif model_name == "Qwen3-VL-2B-Instruct": | |
| processor, model = processor_l, model_l | |
| elif model_name == "Qwen3-VL-2B-Thinking": | |
| processor, model = processor_j, model_j | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for video input. | |
| """ | |
| # if model_name == "Qwen2.5-VL-7B-Instruct": | |
| # processor, model = processor_m, model_m | |
| # elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| # processor, model = processor_x, model_x | |
| if model_name == "Qwen3-VL-4B-Instruct": | |
| processor, model = processor_q, model_q | |
| elif model_name == "Qwen3-VL-8B-Instruct": | |
| processor, model = processor_y, model_y | |
| # elif model_name == "Qwen3-VL-8B-Thinking": | |
| # processor, model = processor_z, model_z | |
| elif model_name == "Qwen3-VL-4B-Thinking": | |
| processor, model = processor_t, model_t | |
| elif model_name == "Qwen3-VL-2B-Instruct": | |
| processor, model = processor_l, model_l | |
| elif model_name == "Qwen3-VL-2B-Thinking": | |
| processor, model = processor_j, model_j | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| if not frames: | |
| yield "Could not process video.", "Could not process video." | |
| return | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| images_for_processor = [] | |
| for frame in frames: | |
| messages[0]["content"].append({"type": "image"}) | |
| images_for_processor.append(frame) | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, | |
| "do_sample": True, "temperature": temperature, "top_p": top_p, | |
| "top_k": top_k, "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # @spaces.GPU(duration=120) | |
| # def generate_pdf(model_name: str, text: str, state: Dict[str, Any], | |
| # max_new_tokens: int = 2048, | |
| # temperature: float = 0.6, | |
| # top_p: float = 0.9, | |
| # top_k: int = 50, | |
| # repetition_penalty: float = 1.2): | |
| # # if model_name == "Qwen2.5-VL-7B-Instruct": | |
| # # processor, model = processor_m, model_m | |
| # # elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| # # processor, model = processor_x, model_x | |
| # if model_name == "Qwen3-VL-4B-Instruct": | |
| # processor, model = processor_q, model_q | |
| # elif model_name == "Qwen3-VL-8B-Instruct": | |
| # processor, model = processor_y, model_y | |
| # # elif model_name == "Qwen3-VL-8B-Thinking": | |
| # # processor, model = processor_z, model_z | |
| # elif model_name == "Qwen3-VL-4B-Thinking": | |
| # processor, model = processor_t, model_t | |
| # elif model_name == "Qwen3-VL-2B-Instruct": | |
| # processor, model = processor_l, model_l | |
| # elif model_name == "Qwen3-VL-2B-Thinking": | |
| # processor, model = processor_j, model_j | |
| # else: | |
| # yield "Invalid model selected.", "Invalid model selected." | |
| # return | |
| # if not state or not state["pages"]: | |
| # yield "Please upload a PDF file first.", "Please upload a PDF file first." | |
| # return | |
| # page_images = state["pages"] | |
| # full_response = "" | |
| # for i, image in enumerate(page_images): | |
| # page_header = f"--- Page {i+1}/{len(page_images)} ---\n" | |
| # yield full_response + page_header, full_response + page_header | |
| # messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] | |
| # # Sử dụng processor đã chọn | |
| # prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) | |
| # streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| # generation_kwargs = { | |
| # **inputs, | |
| # "streamer": streamer, | |
| # "max_new_tokens": max_new_tokens, | |
| # "do_sample": True, | |
| # "temperature": temperature, | |
| # "top_p": top_p, | |
| # "top_k": top_k, | |
| # "repetition_penalty": repetition_penalty | |
| # } | |
| # # Sử dụng model đã chọn | |
| # thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| # thread.start() | |
| # page_buffer = "" | |
| # for new_text in streamer: | |
| # page_buffer += new_text | |
| # yield full_response + page_header + page_buffer, full_response + page_header + page_buffer | |
| # time.sleep(0.01) | |
| # full_response += page_header + page_buffer + "\n\n" | |
| def generate_pdf(model_name: str, text: str, state: Dict[str, Any], | |
| max_new_tokens: int = 2048, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| if model_name == "Qwen3-VL-4B-Instruct": | |
| processor, model = processor_q, model_q | |
| elif model_name == "Qwen3-VL-8B-Instruct": | |
| processor, model = processor_y, model_y | |
| elif model_name == "Qwen3-VL-4B-Thinking": | |
| processor, model = processor_t, model_t | |
| elif model_name == "Qwen3-VL-2B-Instruct": | |
| processor, model = processor_l, model_l | |
| elif model_name == "Qwen3-VL-2B-Thinking": | |
| processor, model = processor_j, model_j | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if not state or not state["pages"]: | |
| yield "Please upload a PDF file first.", "Please upload a PDF file first." | |
| return | |
| page_images = state["pages"] | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| images_for_processor = [] | |
| for frame in page_images: | |
| messages[0]["content"].append({"type": "image"}) | |
| images_for_processor.append(frame) | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=images_for_processor, # Truyền cả list ảnh | |
| return_tensors="pt", | |
| padding=True | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") # Thêm dòng này giống video | |
| yield buffer, buffer | |
| time.sleep(0.01) | |
| image_examples = [ | |
| ["Explain the content in detail.", "images/force.jpg"], | |
| ["Explain the content (ocr).", "images/ocr.jpg"], | |
| ["Extract the content in the json format", "images/bill.jpg"], | |
| ["Choose the right answer .", "images/math.jpg"], | |
| ] | |
| video_examples = [ | |
| ["Explain the ad in detail", "videos/1.mp4"], | |
| ["Identify the main actions in the video", "videos/2.mp4"], | |
| ] | |
| pdf_examples = [ | |
| ["Extract the content precisely.", "pdfs/doc1.pdf"], | |
| ["Nội dung của văn bản trong ảnh là gì?.", "pdfs/doc2.pdf"] | |
| ] | |
| css = """ | |
| #main-title h1 { | |
| font-size: 2.3em !important; | |
| } | |
| #output-title h2 { | |
| font-size: 2.1em !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
| pdf_state = gr.State(value=get_initial_pdf_state()) | |
| gr.Markdown("# 🎉**Qwen3-VL-Demo**🎉", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| image_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Upload Video", height=290) | |
| video_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) | |
| with gr.TabItem("PDF Inference"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'") | |
| pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) | |
| pdf_submit = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| pdf_preview_img = gr.Image(label="PDF Preview", height=290) | |
| with gr.Row(): | |
| prev_page_btn = gr.Button("◀ Previous") | |
| page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>') | |
| next_page_btn = gr.Button("Next ▶") | |
| gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload]) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(scale=3): | |
| gr.Markdown("## Output", elem_id="output-title") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown(latex_delimiters=[ | |
| {"left": "$$", "right": "$$", "display": True}, | |
| {"left": "$", "right": "$", "display": False} | |
| ]) | |
| model_choice = gr.Radio( | |
| choices=["Qwen3-VL-4B-Instruct", "Qwen3-VL-8B-Instruct", "Qwen3-VL-2B-Instruct", "Qwen3-VL-2B-Thinking", "Qwen3-VL-4B-Thinking"], #"Qwen2.5-VL-3B-Instruct", "Qwen2.5-VL-7B-Instruct"], | |
| label="Select Model", | |
| value="Qwen3-VL-4B-Instruct" | |
| ) | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| video_submit.click( | |
| fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| pdf_submit.click( | |
| fn=generate_pdf, | |
| inputs=[model_choice, pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| pdf_upload.change( | |
| fn=load_and_preview_pdf, | |
| inputs=[pdf_upload], | |
| outputs=[pdf_preview_img, pdf_state, page_info] | |
| ) | |
| prev_page_btn.click( | |
| fn=lambda s: navigate_pdf_page("prev", s), | |
| inputs=[pdf_state], | |
| outputs=[pdf_preview_img, pdf_state, page_info] | |
| ) | |
| next_page_btn.click( | |
| fn=lambda s: navigate_pdf_page("next", s), | |
| inputs=[pdf_state], | |
| outputs=[pdf_preview_img, pdf_state, page_info] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |