Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,57 @@
|
|
| 1 |
-
"""Streamlit app for Presidio."""
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from json import JSONEncoder
|
| 5 |
-
from annotated_text import annotated_text
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import streamlit as st
|
| 8 |
-
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
| 9 |
-
from presidio_anonymizer import AnonymizerEngine
|
| 10 |
-
|
| 11 |
-
from flair_recognizer import FlairRecognizer
|
| 12 |
|
| 13 |
import spacy
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Helper methods
|
| 17 |
@st.cache(allow_output_mutation=True)
|
| 18 |
def analyzer_engine():
|
| 19 |
"""Return AnalyzerEngine."""
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
registry = RecognizerRegistry()
|
| 24 |
-
|
| 25 |
-
registry.load_predefined_recognizers()
|
|
|
|
|
|
|
| 26 |
registry.remove_recognizer("SpacyRecognizer")
|
| 27 |
-
|
| 28 |
-
analyzer = AnalyzerEngine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
return analyzer
|
| 30 |
|
| 31 |
-
|
| 32 |
@st.cache(allow_output_mutation=True)
|
| 33 |
def anonymizer_engine():
|
| 34 |
"""Return AnonymizerEngine."""
|
|
@@ -49,10 +72,12 @@ def analyze(**kwargs):
|
|
| 49 |
|
| 50 |
def anonymize(text, analyze_results):
|
| 51 |
"""Anonymize identified input using Presidio Abonymizer."""
|
| 52 |
-
|
|
|
|
| 53 |
res = anonymizer_engine().anonymize(text, analyze_results)
|
| 54 |
return res.text
|
| 55 |
|
|
|
|
| 56 |
def annotate(text, st_analyze_results, st_entities):
|
| 57 |
tokens = []
|
| 58 |
# sort by start index
|
|
@@ -72,12 +97,14 @@ def annotate(text, st_analyze_results, st_entities):
|
|
| 72 |
tokens.append(text[res.end:])
|
| 73 |
return tokens
|
| 74 |
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
# Side bar
|
| 78 |
st.sidebar.markdown(
|
| 79 |
-
"""
|
| 80 |
-
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol
|
|
|
|
| 81 |
"""
|
| 82 |
)
|
| 83 |
|
|
@@ -91,7 +118,8 @@ st_threshold = st.sidebar.slider(
|
|
| 91 |
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
| 92 |
)
|
| 93 |
|
| 94 |
-
st_return_decision_process = st.sidebar.checkbox(
|
|
|
|
| 95 |
|
| 96 |
st.sidebar.info(
|
| 97 |
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
|
|
@@ -100,42 +128,49 @@ st.sidebar.info(
|
|
| 100 |
|
| 101 |
|
| 102 |
# Main panel
|
| 103 |
-
analyzer_load_state = st.info(
|
|
|
|
| 104 |
engine = analyzer_engine()
|
| 105 |
analyzer_load_state.empty()
|
| 106 |
|
| 107 |
|
| 108 |
st_text = st.text_area(
|
| 109 |
label="Type in some text",
|
| 110 |
-
value=
|
| 111 |
-
"SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
|
| 112 |
"\n\n"
|
| 113 |
"{user: Willie Porter, ip: 192.168.2.80, email: willie@gmail.com}",
|
| 114 |
height=200,
|
| 115 |
)
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
# After
|
| 118 |
st.subheader("Analyzed")
|
| 119 |
with st.spinner("Analyzing..."):
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
# vertical space
|
| 132 |
st.text("")
|
| 133 |
-
|
| 134 |
st.subheader("Anonymized")
|
| 135 |
|
| 136 |
with st.spinner("Anonymizing..."):
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
# table result
|
| 141 |
st.subheader("Detailed Findings")
|
|
@@ -155,11 +190,14 @@ if st_analyze_results:
|
|
| 155 |
)
|
| 156 |
|
| 157 |
st.dataframe(df, width=1000)
|
| 158 |
-
# table result
|
| 159 |
else:
|
| 160 |
st.text("No findings")
|
| 161 |
|
|
|
|
|
|
|
| 162 |
# json result
|
|
|
|
|
|
|
| 163 |
class ToDictListEncoder(JSONEncoder):
|
| 164 |
"""Encode dict to json."""
|
| 165 |
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
"""Streamlit app for Presidio + Privy-trained PII models."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import spacy
|
| 5 |
+
from spacy_recognizer import CustomSpacyRecognizer
|
| 6 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
| 7 |
+
from presidio_anonymizer import AnonymizerEngine
|
| 8 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from annotated_text import annotated_text
|
| 11 |
+
from json import JSONEncoder
|
| 12 |
+
import json
|
| 13 |
+
import warnings
|
| 14 |
+
import streamlit as st
|
| 15 |
+
import os
|
| 16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 17 |
+
warnings.filterwarnings('ignore')
|
| 18 |
+
# from flair_recognizer import FlairRecognizer
|
| 19 |
|
| 20 |
# Helper methods
|
| 21 |
@st.cache(allow_output_mutation=True)
|
| 22 |
def analyzer_engine():
|
| 23 |
"""Return AnalyzerEngine."""
|
| 24 |
|
| 25 |
+
spacy_recognizer = CustomSpacyRecognizer()
|
| 26 |
+
|
| 27 |
+
configuration = {
|
| 28 |
+
"nlp_engine_name": "spacy",
|
| 29 |
+
"models": [
|
| 30 |
+
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Create NLP engine based on configuration
|
| 34 |
+
provider = NlpEngineProvider(nlp_configuration=configuration)
|
| 35 |
+
nlp_engine = provider.create_engine()
|
| 36 |
+
|
| 37 |
registry = RecognizerRegistry()
|
| 38 |
+
# add rule-based recognizers
|
| 39 |
+
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
| 40 |
+
registry.add_recognizer(spacy_recognizer)
|
| 41 |
+
# remove the nlp engine we passed, to use custom label mappings
|
| 42 |
registry.remove_recognizer("SpacyRecognizer")
|
| 43 |
+
|
| 44 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
|
| 45 |
+
registry=registry, supported_languages=["en"])
|
| 46 |
+
|
| 47 |
+
# uncomment for flair-based NLP recognizer
|
| 48 |
+
# flair_recognizer = FlairRecognizer()
|
| 49 |
+
# registry.load_predefined_recognizers()
|
| 50 |
+
# registry.add_recognizer(flair_recognizer)
|
| 51 |
+
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
|
| 52 |
return analyzer
|
| 53 |
|
| 54 |
+
|
| 55 |
@st.cache(allow_output_mutation=True)
|
| 56 |
def anonymizer_engine():
|
| 57 |
"""Return AnonymizerEngine."""
|
|
|
|
| 72 |
|
| 73 |
def anonymize(text, analyze_results):
|
| 74 |
"""Anonymize identified input using Presidio Abonymizer."""
|
| 75 |
+
if not text:
|
| 76 |
+
return
|
| 77 |
res = anonymizer_engine().anonymize(text, analyze_results)
|
| 78 |
return res.text
|
| 79 |
|
| 80 |
+
|
| 81 |
def annotate(text, st_analyze_results, st_entities):
|
| 82 |
tokens = []
|
| 83 |
# sort by start index
|
|
|
|
| 97 |
tokens.append(text[res.end:])
|
| 98 |
return tokens
|
| 99 |
|
| 100 |
+
|
| 101 |
+
st.set_page_config(page_title="Privy + Presidio demo (English)", layout="wide")
|
| 102 |
|
| 103 |
# Side bar
|
| 104 |
st.sidebar.markdown(
|
| 105 |
+
"""
|
| 106 |
+
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol traces (JSON, SQL, XML etc.) generated by
|
| 107 |
+
[Privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and rule-based classifiers from [Presidio](https://aka.ms/presidio).
|
| 108 |
"""
|
| 109 |
)
|
| 110 |
|
|
|
|
| 118 |
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
| 119 |
)
|
| 120 |
|
| 121 |
+
st_return_decision_process = st.sidebar.checkbox(
|
| 122 |
+
"Add analysis explanations in json")
|
| 123 |
|
| 124 |
st.sidebar.info(
|
| 125 |
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
|
|
|
|
| 128 |
|
| 129 |
|
| 130 |
# Main panel
|
| 131 |
+
analyzer_load_state = st.info(
|
| 132 |
+
"Starting Presidio analyzer and loading Privy-trained PII model...")
|
| 133 |
engine = analyzer_engine()
|
| 134 |
analyzer_load_state.empty()
|
| 135 |
|
| 136 |
|
| 137 |
st_text = st.text_area(
|
| 138 |
label="Type in some text",
|
| 139 |
+
value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
|
|
|
|
| 140 |
"\n\n"
|
| 141 |
"{user: Willie Porter, ip: 192.168.2.80, email: willie@gmail.com}",
|
| 142 |
height=200,
|
| 143 |
)
|
| 144 |
|
| 145 |
+
button = st.button("Detect PII")
|
| 146 |
+
|
| 147 |
+
if 'first_load' not in st.session_state:
|
| 148 |
+
st.session_state['first_load'] = True
|
| 149 |
+
|
| 150 |
# After
|
| 151 |
st.subheader("Analyzed")
|
| 152 |
with st.spinner("Analyzing..."):
|
| 153 |
+
if button or st.session_state.first_load:
|
| 154 |
+
st_analyze_results = analyze(
|
| 155 |
+
text=st_text,
|
| 156 |
+
entities=st_entities,
|
| 157 |
+
language="en",
|
| 158 |
+
score_threshold=st_threshold,
|
| 159 |
+
return_decision_process=st_return_decision_process,
|
| 160 |
+
)
|
| 161 |
+
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
|
| 162 |
+
# annotated_tokens
|
| 163 |
+
annotated_text(*annotated_tokens)
|
| 164 |
# vertical space
|
| 165 |
st.text("")
|
| 166 |
+
|
| 167 |
st.subheader("Anonymized")
|
| 168 |
|
| 169 |
with st.spinner("Anonymizing..."):
|
| 170 |
+
if button or st.session_state.first_load:
|
| 171 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
| 172 |
+
st_anonymize_results
|
| 173 |
+
|
| 174 |
|
| 175 |
# table result
|
| 176 |
st.subheader("Detailed Findings")
|
|
|
|
| 190 |
)
|
| 191 |
|
| 192 |
st.dataframe(df, width=1000)
|
|
|
|
| 193 |
else:
|
| 194 |
st.text("No findings")
|
| 195 |
|
| 196 |
+
st.session_state['first_load'] = True
|
| 197 |
+
|
| 198 |
# json result
|
| 199 |
+
|
| 200 |
+
|
| 201 |
class ToDictListEncoder(JSONEncoder):
|
| 202 |
"""Encode dict to json."""
|
| 203 |
|