Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
465a95b
1
Parent(s):
874e761
[Add] heatmap plot with seaborn instead of plotly
Browse files- app.py +64 -72
- app_heatmap.py +0 -103
- app_simple.py +106 -0
app.py
CHANGED
|
@@ -1,106 +1,98 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import matplotlib.pyplot as plt
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
| 4 |
from io import BytesIO
|
| 5 |
from PIL import Image
|
| 6 |
-
|
| 7 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 8 |
-
from src.similarity import compute_similarity
|
| 9 |
|
| 10 |
-
# Set
|
| 11 |
-
|
| 12 |
-
matplotlib.use('Agg')
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
x = np.linspace(0, 10, 100)
|
| 18 |
-
y = np.sin(x)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
buf = BytesIO()
|
| 27 |
-
|
| 28 |
-
plt.close(
|
| 29 |
|
| 30 |
-
# Convert
|
| 31 |
buf.seek(0)
|
| 32 |
img = Image.open(buf).convert("RGB")
|
| 33 |
return img
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
raise gr.Error("Please select Model A!")
|
| 39 |
-
if not selected_model_b:
|
| 40 |
-
raise gr.Error("Please select Model B!")
|
| 41 |
if not selected_dataset:
|
| 42 |
raise gr.Error("Please select a dataset!")
|
| 43 |
|
| 44 |
-
def display_similarity(model_a, model_b, dataset):
|
| 45 |
-
# Assuming compute_similarity returns a float or a string
|
| 46 |
-
similarity_score = compute_similarity(model_a, model_b, dataset)
|
| 47 |
-
return f"The similarity between {model_a} and {model_b} on {dataset} is: {similarity_score}"
|
| 48 |
-
|
| 49 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 50 |
gr.Markdown("## Model Similarity Comparison Tool")
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
model_b_dropdown = gr.Dropdown(
|
| 69 |
-
choices=get_leaderboard_models_cached(),
|
| 70 |
-
label="Select Model B",
|
| 71 |
-
filterable=True,
|
| 72 |
-
allow_custom_value=False,
|
| 73 |
-
info="Search and select models"
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
generate_btn = gr.Button("Compute Similarity", variant="primary")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
label="Similarity Result",
|
| 81 |
-
interactive=False
|
| 82 |
-
)
|
| 83 |
|
| 84 |
generate_btn.click(
|
| 85 |
fn=validate_inputs,
|
| 86 |
-
inputs=[
|
| 87 |
queue=False
|
| 88 |
).then(
|
| 89 |
-
fn=
|
| 90 |
-
inputs=[
|
| 91 |
-
outputs=
|
| 92 |
)
|
| 93 |
|
| 94 |
clear_btn = gr.Button("Clear Selection")
|
| 95 |
clear_btn.click(
|
| 96 |
-
lambda: [None, None, None
|
| 97 |
-
outputs=[
|
| 98 |
)
|
| 99 |
|
| 100 |
-
gr.Markdown("## Matplotlib Plot in Gradio")
|
| 101 |
-
plot_button = gr.Button("Generate Plot")
|
| 102 |
-
plot_output = gr.Image(label="Sine Wave Plot")
|
| 103 |
-
plot_button.click(fn=generate_plot, outputs=plot_output)
|
| 104 |
-
|
| 105 |
if __name__ == "__main__":
|
| 106 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
from io import BytesIO
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
|
|
|
| 8 |
|
| 9 |
+
# Set matplotlib backend for non-GUI environments
|
| 10 |
+
plt.switch_backend('Agg')
|
|
|
|
| 11 |
|
| 12 |
+
def create_heatmap(selected_models, selected_dataset):
|
| 13 |
+
if not selected_models or not selected_dataset:
|
| 14 |
+
return None
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
size = len(selected_models)
|
| 17 |
+
similarities = np.random.rand(size, size)
|
| 18 |
+
similarities = (similarities + similarities.T) / 2
|
| 19 |
+
similarities = np.round(similarities, 2)
|
| 20 |
+
|
| 21 |
+
# Create figure and heatmap using seaborn
|
| 22 |
+
plt.figure(figsize=(10, 8))
|
| 23 |
+
ax = sns.heatmap(
|
| 24 |
+
similarities,
|
| 25 |
+
annot=True,
|
| 26 |
+
fmt=".2f",
|
| 27 |
+
cmap="viridis",
|
| 28 |
+
vmin=0,
|
| 29 |
+
vmax=1,
|
| 30 |
+
xticklabels=selected_models,
|
| 31 |
+
yticklabels=selected_models
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
# Customize plot
|
| 35 |
+
plt.title(f"Similarity Matrix for {selected_dataset}", fontsize=14)
|
| 36 |
+
plt.xlabel("Models")
|
| 37 |
+
plt.ylabel("Models")
|
| 38 |
+
plt.xticks(rotation=45, ha='right')
|
| 39 |
+
plt.yticks(rotation=0)
|
| 40 |
+
plt.tight_layout()
|
| 41 |
+
|
| 42 |
+
# Save to buffer
|
| 43 |
buf = BytesIO()
|
| 44 |
+
plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
|
| 45 |
+
plt.close()
|
| 46 |
|
| 47 |
+
# Convert to PIL Image
|
| 48 |
buf.seek(0)
|
| 49 |
img = Image.open(buf).convert("RGB")
|
| 50 |
return img
|
| 51 |
|
| 52 |
+
def validate_inputs(selected_models, selected_dataset):
|
| 53 |
+
if not selected_models:
|
| 54 |
+
raise gr.Error("Please select at least one model!")
|
|
|
|
|
|
|
|
|
|
| 55 |
if not selected_dataset:
|
| 56 |
raise gr.Error("Please select a dataset!")
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 59 |
gr.Markdown("## Model Similarity Comparison Tool")
|
| 60 |
|
| 61 |
+
with gr.Row():
|
| 62 |
+
dataset_dropdown = gr.Dropdown(
|
| 63 |
+
choices=get_leaderboard_datasets(),
|
| 64 |
+
label="Select Dataset",
|
| 65 |
+
filterable=True,
|
| 66 |
+
interactive=True,
|
| 67 |
+
info="Leaderboard benchmark datasets"
|
| 68 |
+
)
|
| 69 |
+
model_dropdown = gr.Dropdown(
|
| 70 |
+
choices=get_leaderboard_models_cached(),
|
| 71 |
+
label="Select Models",
|
| 72 |
+
multiselect=True,
|
| 73 |
+
filterable=True,
|
| 74 |
+
allow_custom_value=False,
|
| 75 |
+
info="Search and select multiple models"
|
| 76 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
generate_btn = gr.Button("Generate Heatmap", variant="primary")
|
| 79 |
+
heatmap = gr.Image(label="Similarity Heatmap", visible=True)
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
generate_btn.click(
|
| 82 |
fn=validate_inputs,
|
| 83 |
+
inputs=[model_dropdown, dataset_dropdown],
|
| 84 |
queue=False
|
| 85 |
).then(
|
| 86 |
+
fn=create_heatmap,
|
| 87 |
+
inputs=[model_dropdown, dataset_dropdown],
|
| 88 |
+
outputs=heatmap
|
| 89 |
)
|
| 90 |
|
| 91 |
clear_btn = gr.Button("Clear Selection")
|
| 92 |
clear_btn.click(
|
| 93 |
+
lambda: [None, None, None],
|
| 94 |
+
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
| 95 |
)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
if __name__ == "__main__":
|
| 98 |
+
demo.launch(ssr_mode=False)
|
app_heatmap.py
DELETED
|
@@ -1,103 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import plotly.graph_objects as go
|
| 3 |
-
import numpy as np
|
| 4 |
-
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 5 |
-
|
| 6 |
-
# Optionally, force a renderer (may or may not help)
|
| 7 |
-
import plotly.io as pio
|
| 8 |
-
pio.renderers.default = "iframe"
|
| 9 |
-
|
| 10 |
-
def create_heatmap(selected_models, selected_dataset):
|
| 11 |
-
if not selected_models or not selected_dataset:
|
| 12 |
-
return "" # Return empty HTML if no input
|
| 13 |
-
size = len(selected_models)
|
| 14 |
-
similarities = np.random.rand(size, size)
|
| 15 |
-
similarities = (similarities + similarities.T) / 2
|
| 16 |
-
similarities = np.round(similarities, 2)
|
| 17 |
-
|
| 18 |
-
fig = go.Figure(data=go.Heatmap(
|
| 19 |
-
z=similarities,
|
| 20 |
-
x=selected_models,
|
| 21 |
-
y=selected_models,
|
| 22 |
-
colorscale="Viridis",
|
| 23 |
-
zmin=0, zmax=1,
|
| 24 |
-
text=similarities,
|
| 25 |
-
hoverinfo="text"
|
| 26 |
-
))
|
| 27 |
-
|
| 28 |
-
fig.update_layout(
|
| 29 |
-
title=f"Similarity Matrix for {selected_dataset}",
|
| 30 |
-
xaxis_title="Models",
|
| 31 |
-
yaxis_title="Models",
|
| 32 |
-
width=800,
|
| 33 |
-
height=800,
|
| 34 |
-
margin=dict(l=100, r=100, t=100, b=100)
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
# Force categorical ordering with explicit tick settings.
|
| 38 |
-
fig.update_xaxes(
|
| 39 |
-
type="category",
|
| 40 |
-
categoryorder="array",
|
| 41 |
-
categoryarray=selected_models,
|
| 42 |
-
tickangle=45,
|
| 43 |
-
automargin=True
|
| 44 |
-
)
|
| 45 |
-
fig.update_yaxes(
|
| 46 |
-
type="category",
|
| 47 |
-
categoryorder="array",
|
| 48 |
-
categoryarray=selected_models,
|
| 49 |
-
automargin=True
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# Convert the figure to an HTML string that includes Plotly.js via CDN.
|
| 53 |
-
return fig.to_html(full_html=False, include_plotlyjs="cdn")
|
| 54 |
-
|
| 55 |
-
def validate_inputs(selected_models, selected_dataset):
|
| 56 |
-
if not selected_models:
|
| 57 |
-
raise gr.Error("Please select at least one model!")
|
| 58 |
-
if not selected_dataset:
|
| 59 |
-
raise gr.Error("Please select a dataset!")
|
| 60 |
-
|
| 61 |
-
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 62 |
-
gr.Markdown("## Model Similarity Comparison Tool")
|
| 63 |
-
|
| 64 |
-
with gr.Row():
|
| 65 |
-
dataset_dropdown = gr.Dropdown(
|
| 66 |
-
choices=get_leaderboard_datasets(),
|
| 67 |
-
label="Select Dataset",
|
| 68 |
-
filterable=True,
|
| 69 |
-
interactive=True,
|
| 70 |
-
info="Leaderboard benchmark datasets"
|
| 71 |
-
)
|
| 72 |
-
model_dropdown = gr.Dropdown(
|
| 73 |
-
choices=get_leaderboard_models_cached(),
|
| 74 |
-
label="Select Models",
|
| 75 |
-
multiselect=True,
|
| 76 |
-
filterable=True,
|
| 77 |
-
allow_custom_value=False,
|
| 78 |
-
info="Search and select multiple models"
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
generate_btn = gr.Button("Generate Heatmap", variant="primary")
|
| 82 |
-
# Use an HTML component instead of gr.Plot.
|
| 83 |
-
heatmap = gr.HTML(label="Similarity Heatmap", visible=True)
|
| 84 |
-
|
| 85 |
-
generate_btn.click(
|
| 86 |
-
fn=validate_inputs,
|
| 87 |
-
inputs=[model_dropdown, dataset_dropdown],
|
| 88 |
-
queue=False
|
| 89 |
-
).then(
|
| 90 |
-
fn=create_heatmap,
|
| 91 |
-
inputs=[model_dropdown, dataset_dropdown],
|
| 92 |
-
outputs=heatmap
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
clear_btn = gr.Button("Clear Selection")
|
| 96 |
-
clear_btn.click(
|
| 97 |
-
lambda: [None, None, ""],
|
| 98 |
-
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
if __name__ == "__main__":
|
| 102 |
-
# On Spaces, disable server-side rendering.
|
| 103 |
-
demo.launch(ssr_mode=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_simple.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 8 |
+
from src.similarity import compute_similarity
|
| 9 |
+
|
| 10 |
+
# Set the backend to 'Agg' for non-GUI environments (optional)
|
| 11 |
+
import matplotlib
|
| 12 |
+
matplotlib.use('Agg')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def generate_plot():
|
| 16 |
+
# Generate data
|
| 17 |
+
x = np.linspace(0, 10, 100)
|
| 18 |
+
y = np.sin(x)
|
| 19 |
+
|
| 20 |
+
# Create figure
|
| 21 |
+
fig, ax = plt.subplots()
|
| 22 |
+
ax.plot(x, y)
|
| 23 |
+
ax.set_title("Sine Wave")
|
| 24 |
+
|
| 25 |
+
# Save figure to a BytesIO buffer
|
| 26 |
+
buf = BytesIO()
|
| 27 |
+
fig.savefig(buf, format="png", bbox_inches="tight", facecolor="white", dpi=100)
|
| 28 |
+
plt.close(fig) # Close the figure to free memory
|
| 29 |
+
|
| 30 |
+
# Convert buffer to PIL Image
|
| 31 |
+
buf.seek(0)
|
| 32 |
+
img = Image.open(buf).convert("RGB")
|
| 33 |
+
return img
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def validate_inputs(selected_model_a, selected_model_b, selected_dataset):
|
| 37 |
+
if not selected_model_a:
|
| 38 |
+
raise gr.Error("Please select Model A!")
|
| 39 |
+
if not selected_model_b:
|
| 40 |
+
raise gr.Error("Please select Model B!")
|
| 41 |
+
if not selected_dataset:
|
| 42 |
+
raise gr.Error("Please select a dataset!")
|
| 43 |
+
|
| 44 |
+
def display_similarity(model_a, model_b, dataset):
|
| 45 |
+
# Assuming compute_similarity returns a float or a string
|
| 46 |
+
similarity_score = compute_similarity(model_a, model_b, dataset)
|
| 47 |
+
return f"The similarity between {model_a} and {model_b} on {dataset} is: {similarity_score}"
|
| 48 |
+
|
| 49 |
+
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 50 |
+
gr.Markdown("## Model Similarity Comparison Tool")
|
| 51 |
+
|
| 52 |
+
dataset_dropdown = gr.Dropdown(
|
| 53 |
+
choices=get_leaderboard_datasets(),
|
| 54 |
+
label="Select Dataset",
|
| 55 |
+
filterable=True,
|
| 56 |
+
interactive=True,
|
| 57 |
+
info="Leaderboard benchmark datasets"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
model_a_dropdown = gr.Dropdown(
|
| 61 |
+
choices=get_leaderboard_models_cached(),
|
| 62 |
+
label="Select Model A",
|
| 63 |
+
filterable=True,
|
| 64 |
+
allow_custom_value=False,
|
| 65 |
+
info="Search and select models"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
model_b_dropdown = gr.Dropdown(
|
| 69 |
+
choices=get_leaderboard_models_cached(),
|
| 70 |
+
label="Select Model B",
|
| 71 |
+
filterable=True,
|
| 72 |
+
allow_custom_value=False,
|
| 73 |
+
info="Search and select models"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
generate_btn = gr.Button("Compute Similarity", variant="primary")
|
| 77 |
+
|
| 78 |
+
# Textbox to display the similarity result
|
| 79 |
+
similarity_output = gr.Textbox(
|
| 80 |
+
label="Similarity Result",
|
| 81 |
+
interactive=False
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
generate_btn.click(
|
| 85 |
+
fn=validate_inputs,
|
| 86 |
+
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown],
|
| 87 |
+
queue=False
|
| 88 |
+
).then(
|
| 89 |
+
fn=display_similarity,
|
| 90 |
+
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown],
|
| 91 |
+
outputs=similarity_output
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
clear_btn = gr.Button("Clear Selection")
|
| 95 |
+
clear_btn.click(
|
| 96 |
+
lambda: [None, None, None, ""],
|
| 97 |
+
outputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown, similarity_output]
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
gr.Markdown("## Matplotlib Plot in Gradio")
|
| 101 |
+
plot_button = gr.Button("Generate Plot")
|
| 102 |
+
plot_output = gr.Image(label="Sine Wave Plot")
|
| 103 |
+
plot_button.click(fn=generate_plot, outputs=plot_output)
|
| 104 |
+
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
demo.launch()
|