Spaces:
Sleeping
Sleeping
Joschka Strueber
commited on
Commit
·
53d5dd8
1
Parent(s):
e1a6930
[Add] clear button, load the right data, create plot on click
Browse files- app.py +43 -23
- src/dataloading.py +8 -12
app.py
CHANGED
|
@@ -6,35 +6,41 @@ import numpy as np
|
|
| 6 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 7 |
|
| 8 |
|
| 9 |
-
def create_heatmap(selected_models,
|
| 10 |
if not selected_models:
|
| 11 |
-
return gr.
|
| 12 |
|
| 13 |
-
# Generate random similarity matrix
|
| 14 |
size = len(selected_models)
|
| 15 |
similarities = np.random.rand(size, size)
|
| 16 |
|
| 17 |
-
# Create symmetric matrix
|
| 18 |
similarities = (similarities + similarities.T) / 2
|
| 19 |
|
| 20 |
-
# Create
|
| 21 |
fig = go.Figure(data=go.Heatmap(
|
| 22 |
z=similarities,
|
| 23 |
x=selected_models,
|
| 24 |
y=selected_models,
|
| 25 |
-
colorscale='Viridis'
|
| 26 |
-
hoverongaps=False
|
| 27 |
))
|
| 28 |
|
| 29 |
fig.update_layout(
|
| 30 |
-
title=f"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
height=600,
|
| 34 |
-
width=800
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 40 |
gr.Markdown("## Model Similarity Comparison Tool")
|
|
@@ -42,12 +48,12 @@ with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
|
| 42 |
# Model selection section
|
| 43 |
with gr.Row():
|
| 44 |
dataset_dropdown = gr.Dropdown(
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
model_dropdown = gr.Dropdown(
|
| 53 |
choices=get_leaderboard_models_cached(),
|
|
@@ -58,20 +64,34 @@ with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
|
| 58 |
info="Search and select multiple models (click selected models to remove)"
|
| 59 |
)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
# Heatmap display
|
| 62 |
heatmap = gr.Plot(
|
| 63 |
label="Similarity Heatmap",
|
| 64 |
visible=False,
|
| 65 |
container=False
|
| 66 |
)
|
| 67 |
-
|
| 68 |
-
#
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
fn=create_heatmap,
|
| 71 |
-
inputs=
|
| 72 |
outputs=heatmap
|
| 73 |
)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
if __name__ == "__main__":
|
| 77 |
demo.launch()
|
|
|
|
| 6 |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
|
| 7 |
|
| 8 |
|
| 9 |
+
def create_heatmap(selected_models, selected_dataset):
|
| 10 |
if not selected_models:
|
| 11 |
+
return gr.Plot(visible=False)
|
| 12 |
|
| 13 |
+
# Generate random similarity matrix (replace with actual computation)
|
| 14 |
size = len(selected_models)
|
| 15 |
similarities = np.random.rand(size, size)
|
| 16 |
|
| 17 |
+
# Create symmetric matrix
|
| 18 |
similarities = (similarities + similarities.T) / 2
|
| 19 |
|
| 20 |
+
# Create plot
|
| 21 |
fig = go.Figure(data=go.Heatmap(
|
| 22 |
z=similarities,
|
| 23 |
x=selected_models,
|
| 24 |
y=selected_models,
|
| 25 |
+
colorscale='Viridis'
|
|
|
|
| 26 |
))
|
| 27 |
|
| 28 |
fig.update_layout(
|
| 29 |
+
title=f"Similarity Matrix for {selected_dataset}",
|
| 30 |
+
width=800,
|
| 31 |
+
height=800
|
|
|
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
+
with gr.Loading():
|
| 35 |
+
return gr.Plot(value=fig, visible=True)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def validate_inputs(selected_models, selected_dataset):
|
| 39 |
+
if not selected_models:
|
| 40 |
+
raise gr.Error("Please select at least one model!")
|
| 41 |
+
if not selected_dataset:
|
| 42 |
+
raise gr.Error("Please select a dataset!")
|
| 43 |
+
|
| 44 |
|
| 45 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 46 |
gr.Markdown("## Model Similarity Comparison Tool")
|
|
|
|
| 48 |
# Model selection section
|
| 49 |
with gr.Row():
|
| 50 |
dataset_dropdown = gr.Dropdown(
|
| 51 |
+
choices=get_leaderboard_datasets(),
|
| 52 |
+
label="Select Dataset",
|
| 53 |
+
filterable=True,
|
| 54 |
+
interactive=True,
|
| 55 |
+
info="Leaderboard benchmark datasets"
|
| 56 |
+
)
|
| 57 |
|
| 58 |
model_dropdown = gr.Dropdown(
|
| 59 |
choices=get_leaderboard_models_cached(),
|
|
|
|
| 64 |
info="Search and select multiple models (click selected models to remove)"
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Add generate button
|
| 68 |
+
generate_btn = gr.Button("Generate Heatmap", variant="primary")
|
| 69 |
+
|
| 70 |
# Heatmap display
|
| 71 |
heatmap = gr.Plot(
|
| 72 |
label="Similarity Heatmap",
|
| 73 |
visible=False,
|
| 74 |
container=False
|
| 75 |
)
|
| 76 |
+
|
| 77 |
+
# Button click handler
|
| 78 |
+
generate_btn.click(
|
| 79 |
+
fn=validate_inputs,
|
| 80 |
+
inputs=[model_dropdown, dataset_dropdown],
|
| 81 |
+
queue=False
|
| 82 |
+
).then(
|
| 83 |
fn=create_heatmap,
|
| 84 |
+
inputs=[model_dropdown, dataset_dropdown],
|
| 85 |
outputs=heatmap
|
| 86 |
)
|
| 87 |
|
| 88 |
+
clear_btn = gr.Button("Clear Selection")
|
| 89 |
+
clear_btn.click(
|
| 90 |
+
lambda: [None, None, gr.Plot(visible=False)],
|
| 91 |
+
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
| 97 |
demo.launch()
|
src/dataloading.py
CHANGED
|
@@ -5,22 +5,18 @@ from functools import lru_cache
|
|
| 5 |
def get_leaderboard_models():
|
| 6 |
api = HfApi()
|
| 7 |
|
| 8 |
-
# List all
|
| 9 |
-
|
| 10 |
-
repo_id="open-llm-leaderboard/open_llm_leaderboard",
|
| 11 |
-
repo_type="space"
|
| 12 |
-
)
|
| 13 |
|
| 14 |
models = []
|
| 15 |
-
for
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
provider, model = filename.split("__", 1)
|
| 21 |
models.append(f"{provider}/{model}")
|
| 22 |
|
| 23 |
-
return sorted(
|
| 24 |
|
| 25 |
|
| 26 |
|
|
|
|
| 5 |
def get_leaderboard_models():
|
| 6 |
api = HfApi()
|
| 7 |
|
| 8 |
+
# List all datasets in the open-llm-leaderboard organization
|
| 9 |
+
datasets = api.list_datasets(author="open-llm-leaderboard")
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
models = []
|
| 12 |
+
for dataset in datasets:
|
| 13 |
+
if dataset.id.endswith("-details"):
|
| 14 |
+
# Format: "open-llm-leaderboard/<provider>__<model_name>-details"
|
| 15 |
+
model_part = dataset.id.split("/")[-1].replace("-details", "")
|
| 16 |
+
provider, model = model_part.split("__", 1)
|
|
|
|
| 17 |
models.append(f"{provider}/{model}")
|
| 18 |
|
| 19 |
+
return sorted(models)
|
| 20 |
|
| 21 |
|
| 22 |
|