Spaces:
Running
Running
Joschka Strueber
commited on
Commit
·
b90e0d3
1
Parent(s):
c24946e
[Add, Ref] Add more info and table on metric, move model list to data/
Browse files- app.py +12 -3
- {src → data}/models.txt +0 -0
- data/table_capa.png +0 -0
- src/dataloading.py +3 -3
app.py
CHANGED
|
@@ -91,7 +91,7 @@ def update_datasets_based_on_models(selected_models, current_dataset):
|
|
| 91 |
return gr.update(choices=[], value=None)
|
| 92 |
|
| 93 |
links_markdown = """
|
| 94 |
-
[📄 Paper](https://arxiv.org/abs/
|
| 95 |
[☯ Homepage](https://model-similarity.github.io/) |
|
| 96 |
[🐱 Code](https://github.com/model-similarity/lm-similarity) |
|
| 97 |
[🐍 pip install lm-sim](https://pypi.org/project/lm-sim/) |
|
|
@@ -105,8 +105,9 @@ metric_init = "CAPA"
|
|
| 105 |
|
| 106 |
# Create Gradio interface
|
| 107 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 108 |
-
gr.Markdown("
|
| 109 |
gr.Markdown(links_markdown)
|
|
|
|
| 110 |
|
| 111 |
with gr.Row():
|
| 112 |
dataset_dropdown = gr.Dropdown(
|
|
@@ -162,7 +163,15 @@ with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
|
| 162 |
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
| 163 |
)
|
| 164 |
|
| 165 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
- **Datasets**: [Open LLM Leaderboard v2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) benchmark datasets \n
|
| 167 |
- Some datasets are not multiple-choice - for these, the metrics are not applicable. \n
|
| 168 |
- **Models**: Open LLM Leaderboard models \n
|
|
|
|
| 91 |
return gr.update(choices=[], value=None)
|
| 92 |
|
| 93 |
links_markdown = """
|
| 94 |
+
[📄 Paper](https://arxiv.org/abs/2502.04313) |
|
| 95 |
[☯ Homepage](https://model-similarity.github.io/) |
|
| 96 |
[🐱 Code](https://github.com/model-similarity/lm-similarity) |
|
| 97 |
[🐍 pip install lm-sim](https://pypi.org/project/lm-sim/) |
|
|
|
|
| 105 |
|
| 106 |
# Create Gradio interface
|
| 107 |
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
|
| 108 |
+
gr.Markdown("# Model Similarity Comparison Tool")
|
| 109 |
gr.Markdown(links_markdown)
|
| 110 |
+
gr.Markdown('Demo for the recent publication ["Great Models Think Alike and this Undermines AI Oversight"](https://huggingface.co/papers/2502.04313).')
|
| 111 |
|
| 112 |
with gr.Row():
|
| 113 |
dataset_dropdown = gr.Dropdown(
|
|
|
|
| 163 |
outputs=[model_dropdown, dataset_dropdown, heatmap]
|
| 164 |
)
|
| 165 |
|
| 166 |
+
gr.Markdown("## Information")
|
| 167 |
+
gr.Markdown("""We propose Chance Adjusted Probabilistic Agreement ($\operatorname\{CAPA\}$, or $\kappa_p$), a novel metric \
|
| 168 |
+
for model similarity which adjusts for chance agreement due to accuracy. Using CAPA, we find: (1) LLM-as-a-judge scores are \
|
| 169 |
+
biased towards more similar models controlling for the model's capability. (2) Gain from training strong models on annotations \
|
| 170 |
+
of weak supervisors (weak-to-strong generalization) is higher when the two models are more different. (3) Concerningly, model \
|
| 171 |
+
errors are getting more correlated as capabilities increase.""")
|
| 172 |
+
image_path = "data/table_capa.png"
|
| 173 |
+
gr.Image(value=image_path, label="Comparison of different similarity metrics for multiple-choice questions", interactive=False)
|
| 174 |
+
gr.Markdown("""
|
| 175 |
- **Datasets**: [Open LLM Leaderboard v2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) benchmark datasets \n
|
| 176 |
- Some datasets are not multiple-choice - for these, the metrics are not applicable. \n
|
| 177 |
- **Models**: Open LLM Leaderboard models \n
|
{src → data}/models.txt
RENAMED
|
File without changes
|
data/table_capa.png
ADDED
|
src/dataloading.py
CHANGED
|
@@ -10,7 +10,7 @@ def get_leaderboard_models_reload():
|
|
| 10 |
|
| 11 |
# Load prechecked models
|
| 12 |
try:
|
| 13 |
-
ungated_models = set(line.strip() for line in open("
|
| 14 |
except FileNotFoundError:
|
| 15 |
ungated_models = set()
|
| 16 |
|
|
@@ -47,7 +47,7 @@ def get_leaderboard_models_reload():
|
|
| 47 |
print(f"Number of models: {len(models)}")
|
| 48 |
|
| 49 |
# Save model list as txt file
|
| 50 |
-
with open("
|
| 51 |
for model in models:
|
| 52 |
f.write(model + "\n")
|
| 53 |
|
|
@@ -56,7 +56,7 @@ def get_leaderboard_models_reload():
|
|
| 56 |
|
| 57 |
def get_leaderboard_models():
|
| 58 |
# Load prechecked (ungated) models
|
| 59 |
-
with open("
|
| 60 |
ungated_models = [line.strip() for line in f]
|
| 61 |
|
| 62 |
return sorted(ungated_models)
|
|
|
|
| 10 |
|
| 11 |
# Load prechecked models
|
| 12 |
try:
|
| 13 |
+
ungated_models = set(line.strip() for line in open("data/models.txt"))
|
| 14 |
except FileNotFoundError:
|
| 15 |
ungated_models = set()
|
| 16 |
|
|
|
|
| 47 |
print(f"Number of models: {len(models)}")
|
| 48 |
|
| 49 |
# Save model list as txt file
|
| 50 |
+
with open("data/models.txt", "w") as f:
|
| 51 |
for model in models:
|
| 52 |
f.write(model + "\n")
|
| 53 |
|
|
|
|
| 56 |
|
| 57 |
def get_leaderboard_models():
|
| 58 |
# Load prechecked (ungated) models
|
| 59 |
+
with open("data/models.txt", "r") as f:
|
| 60 |
ungated_models = [line.strip() for line in f]
|
| 61 |
|
| 62 |
return sorted(ungated_models)
|