Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,7 @@ CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
|
|
| 11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
| 12 |
}"""
|
| 13 |
|
| 14 |
-
# List of CSV filenames
|
| 15 |
tasks = [
|
| 16 |
'asr.csv',
|
| 17 |
'object_detection.csv',
|
|
@@ -30,64 +30,49 @@ def format_stars(score):
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
-
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
| 34 |
|
| 35 |
def make_link(mname):
|
| 36 |
parts = str(mname).split('/')
|
| 37 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 39 |
|
| 40 |
-
def read_csv_file(task):
|
| 41 |
-
"""
|
| 42 |
-
Reads a CSV from the data/energy folder using the first column as the index
|
| 43 |
-
and strips any extraneous whitespace from the column names.
|
| 44 |
-
"""
|
| 45 |
-
df = pd.read_csv('data/energy/' + task, index_col=0)
|
| 46 |
-
df.columns = df.columns.str.strip() # remove any extra whitespace
|
| 47 |
-
return df
|
| 48 |
-
|
| 49 |
def get_plots(task):
|
| 50 |
-
df =
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
df['energy_score'] =
|
| 54 |
-
# Create a short model name for display on the y-axis.
|
| 55 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 56 |
|
| 57 |
-
# Define a discrete color mapping for energy scores.
|
| 58 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 59 |
|
| 60 |
-
# Build the scatter plot.
|
| 61 |
fig = px.scatter(
|
| 62 |
df,
|
| 63 |
-
x="total_gpu_energy",
|
| 64 |
-
y="Display Model",
|
| 65 |
-
color="energy_score",
|
| 66 |
-
custom_data=['
|
| 67 |
height=500,
|
| 68 |
width=800,
|
| 69 |
-
color_discrete_map=color_map
|
| 70 |
)
|
| 71 |
fig.update_traces(
|
| 72 |
-
hovertemplate=(
|
| 73 |
-
"Model: %{
|
| 74 |
-
"
|
| 75 |
-
"Energy Score: %{customdata[
|
| 76 |
-
)
|
| 77 |
-
)
|
| 78 |
-
fig.update_layout(
|
| 79 |
-
xaxis_title="Total GPU Energy (Wh)",
|
| 80 |
-
yaxis_title="Model",
|
| 81 |
-
margin=dict(l=40, r=40, t=40, b=40)
|
| 82 |
)
|
|
|
|
| 83 |
return fig
|
| 84 |
|
| 85 |
def get_all_plots():
|
| 86 |
all_df = pd.DataFrame()
|
| 87 |
for task in tasks:
|
| 88 |
-
df =
|
| 89 |
-
df[
|
| 90 |
-
|
|
|
|
| 91 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 92 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 93 |
all_df = all_df.drop_duplicates(subset=['model'])
|
|
@@ -96,39 +81,38 @@ def get_all_plots():
|
|
| 96 |
|
| 97 |
fig = px.scatter(
|
| 98 |
all_df,
|
| 99 |
-
x="total_gpu_energy",
|
| 100 |
y="Display Model",
|
| 101 |
-
color="energy_score",
|
| 102 |
-
custom_data=['
|
| 103 |
height=500,
|
| 104 |
width=800,
|
| 105 |
-
color_discrete_map=color_map
|
| 106 |
)
|
| 107 |
fig.update_traces(
|
| 108 |
-
hovertemplate=(
|
| 109 |
-
"Model: %{
|
| 110 |
-
"
|
| 111 |
-
"Energy Score: %{customdata[
|
| 112 |
-
)
|
| 113 |
-
)
|
| 114 |
-
fig.update_layout(
|
| 115 |
-
xaxis_title="Total GPU Energy (Wh)",
|
| 116 |
-
yaxis_title="Model",
|
| 117 |
-
margin=dict(l=40, r=40, t=40, b=40)
|
| 118 |
)
|
|
|
|
| 119 |
return fig
|
| 120 |
|
| 121 |
def get_model_names(task):
|
| 122 |
"""
|
| 123 |
-
For a given task, load the energy CSV and return a
|
| 124 |
- Model (a markdown link)
|
| 125 |
-
- GPU Energy (Wh) formatted
|
| 126 |
- Score (a star rating based on energy_score)
|
| 127 |
-
For text_generation.csv only, also
|
|
|
|
| 128 |
"""
|
| 129 |
-
df =
|
| 130 |
-
df[
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 133 |
df['Model'] = df['model'].apply(make_link)
|
| 134 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
@@ -139,30 +123,31 @@ def get_model_names(task):
|
|
| 139 |
else:
|
| 140 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
df = df.sort_values(by='total_gpu_energy')
|
| 144 |
return df
|
| 145 |
|
| 146 |
def get_all_model_names():
|
| 147 |
"""
|
| 148 |
-
Combine data from all tasks and return a leaderboard
|
| 149 |
-
- Model, GPU Energy (Wh), Score
|
| 150 |
Duplicate models are dropped.
|
| 151 |
"""
|
| 152 |
all_df = pd.DataFrame()
|
| 153 |
for task in tasks:
|
| 154 |
-
df =
|
| 155 |
-
df[
|
| 156 |
-
|
|
|
|
| 157 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 158 |
df['Model'] = df['model'].apply(make_link)
|
| 159 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 160 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 161 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 162 |
-
all_df = all_df.sort_values(by='
|
| 163 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 164 |
|
| 165 |
# Build the Gradio interface.
|
|
|
|
| 166 |
demo = gr.Blocks(css="""
|
| 167 |
.gr-dataframe table {
|
| 168 |
table-layout: fixed;
|
|
@@ -189,7 +174,7 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 189 |
with gr.Tabs():
|
| 190 |
with gr.TabItem("Text Generation 💬"):
|
| 191 |
with gr.Row():
|
| 192 |
-
with gr.Column(scale=
|
| 193 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 194 |
with gr.Column(scale=1):
|
| 195 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
|
@@ -272,6 +257,8 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 272 |
lines=10,
|
| 273 |
show_copy_button=True,
|
| 274 |
)
|
| 275 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 276 |
|
| 277 |
-
demo.launch()
|
|
|
|
| 11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
| 12 |
}"""
|
| 13 |
|
| 14 |
+
# List of tasks (CSV filenames)
|
| 15 |
tasks = [
|
| 16 |
'asr.csv',
|
| 17 |
'object_detection.csv',
|
|
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
+
return f'<span style="color: #3fa45bff !important; font-size:2em !important;">{"★" * score_int}</span>'
|
| 34 |
|
| 35 |
def make_link(mname):
|
| 36 |
parts = str(mname).split('/')
|
| 37 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def get_plots(task):
|
| 41 |
+
df = pd.read_csv('data/energy/' + task)
|
| 42 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 43 |
+
df = df.iloc[:, 1:]
|
| 44 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
|
|
|
| 45 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 46 |
|
|
|
|
| 47 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 48 |
|
|
|
|
| 49 |
fig = px.scatter(
|
| 50 |
df,
|
| 51 |
+
x="total_gpu_energy", # Ensure correct column for x-axis
|
| 52 |
+
y="Display Model", # Keep model name for y-axis
|
| 53 |
+
color="energy_score", # Ensure correct column for point color
|
| 54 |
+
custom_data=['energy_score'],
|
| 55 |
height=500,
|
| 56 |
width=800,
|
| 57 |
+
color_discrete_map=color_map
|
| 58 |
)
|
| 59 |
fig.update_traces(
|
| 60 |
+
hovertemplate="<br>".join([
|
| 61 |
+
"Model: %{y}",
|
| 62 |
+
"GPU Energy (Wh): %{x}",
|
| 63 |
+
"Energy Score: %{customdata[0]}"
|
| 64 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
+
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
| 67 |
return fig
|
| 68 |
|
| 69 |
def get_all_plots():
|
| 70 |
all_df = pd.DataFrame()
|
| 71 |
for task in tasks:
|
| 72 |
+
df = pd.read_csv('data/energy/' + task)
|
| 73 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 74 |
+
df = df.iloc[:, 1:]
|
| 75 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 76 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 77 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 78 |
all_df = all_df.drop_duplicates(subset=['model'])
|
|
|
|
| 81 |
|
| 82 |
fig = px.scatter(
|
| 83 |
all_df,
|
| 84 |
+
x="total_gpu_energy", # Ensure correct column for x-axis
|
| 85 |
y="Display Model",
|
| 86 |
+
color="energy_score", # Ensure correct column for point color
|
| 87 |
+
custom_data=['energy_score'],
|
| 88 |
height=500,
|
| 89 |
width=800,
|
| 90 |
+
color_discrete_map=color_map
|
| 91 |
)
|
| 92 |
fig.update_traces(
|
| 93 |
+
hovertemplate="<br>".join([
|
| 94 |
+
"Model: %{y}",
|
| 95 |
+
"GPU Energy (Wh): %{x}",
|
| 96 |
+
"Energy Score: %{customdata[0]}"
|
| 97 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
+
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
| 100 |
return fig
|
| 101 |
|
| 102 |
def get_model_names(task):
|
| 103 |
"""
|
| 104 |
+
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 105 |
- Model (a markdown link)
|
| 106 |
+
- GPU Energy (Wh) formatted as a string with 4 decimal places
|
| 107 |
- Score (a star rating based on energy_score)
|
| 108 |
+
For text_generation.csv only, also add the "Class" column from the CSV.
|
| 109 |
+
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
| 110 |
"""
|
| 111 |
+
df = pd.read_csv('data/energy/' + task)
|
| 112 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 113 |
+
df = df.iloc[:, 1:]
|
| 114 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 115 |
+
# Format the energy as a string with 4 decimals
|
| 116 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 117 |
df['Model'] = df['model'].apply(make_link)
|
| 118 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
|
| 123 |
else:
|
| 124 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 125 |
|
| 126 |
+
df = df.sort_values(by='GPU Energy (Wh)')
|
|
|
|
| 127 |
return df
|
| 128 |
|
| 129 |
def get_all_model_names():
|
| 130 |
"""
|
| 131 |
+
Combine data from all tasks and return a leaderboard table with:
|
| 132 |
+
- Model, GPU Energy (Wh), Score
|
| 133 |
Duplicate models are dropped.
|
| 134 |
"""
|
| 135 |
all_df = pd.DataFrame()
|
| 136 |
for task in tasks:
|
| 137 |
+
df = pd.read_csv('data/energy/' + task)
|
| 138 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 139 |
+
df = df.iloc[:, 1:]
|
| 140 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 141 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 142 |
df['Model'] = df['model'].apply(make_link)
|
| 143 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 144 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 145 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 146 |
+
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
| 147 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 148 |
|
| 149 |
# Build the Gradio interface.
|
| 150 |
+
# The css argument below makes all tables (e.g. leaderboard) use a fixed layout with narrower columns.
|
| 151 |
demo = gr.Blocks(css="""
|
| 152 |
.gr-dataframe table {
|
| 153 |
table-layout: fixed;
|
|
|
|
| 174 |
with gr.Tabs():
|
| 175 |
with gr.TabItem("Text Generation 💬"):
|
| 176 |
with gr.Row():
|
| 177 |
+
with gr.Column(scale=1.3):
|
| 178 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 179 |
with gr.Column(scale=1):
|
| 180 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
|
|
|
| 257 |
lines=10,
|
| 258 |
show_copy_button=True,
|
| 259 |
)
|
| 260 |
+
gr.Markdown(
|
| 261 |
+
"""Last updated: February 2025"""
|
| 262 |
+
)
|
| 263 |
|
| 264 |
+
demo.launch()
|