Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,12 +30,13 @@ def format_stars(score):
|
|
| 30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
| 31 |
into that many star characters wrapped in a span styled with color #3fa45bff
|
| 32 |
and with a font size increased to 2em.
|
|
|
|
| 33 |
"""
|
| 34 |
try:
|
| 35 |
score_int = int(score)
|
| 36 |
except Exception:
|
| 37 |
score_int = 0
|
| 38 |
-
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
| 39 |
|
| 40 |
def make_link(mname):
|
| 41 |
"""
|
|
@@ -49,13 +50,15 @@ def make_link(mname):
|
|
| 49 |
def get_plots(task):
|
| 50 |
"""
|
| 51 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
"""
|
| 55 |
df = pd.read_csv('data/energy/' + task)
|
| 56 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 57 |
-
#
|
| 58 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
| 61 |
color_map = {
|
|
@@ -66,11 +69,10 @@ def get_plots(task):
|
|
| 66 |
5: "green"
|
| 67 |
}
|
| 68 |
|
| 69 |
-
# Create a horizontal scatter plot: x is the energy, y is the model.
|
| 70 |
fig = px.scatter(
|
| 71 |
df,
|
| 72 |
x="GPU Energy (Wh)",
|
| 73 |
-
y="
|
| 74 |
custom_data=['energy_score'],
|
| 75 |
height=500,
|
| 76 |
width=800,
|
|
@@ -97,6 +99,7 @@ def get_all_plots():
|
|
| 97 |
df = pd.read_csv('data/energy/' + task)
|
| 98 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 99 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
|
|
|
| 100 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 101 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 102 |
|
|
@@ -110,7 +113,7 @@ def get_all_plots():
|
|
| 110 |
fig = px.scatter(
|
| 111 |
all_df,
|
| 112 |
x="GPU Energy (Wh)",
|
| 113 |
-
y="
|
| 114 |
custom_data=['energy_score'],
|
| 115 |
height=500,
|
| 116 |
width=800,
|
|
@@ -131,18 +134,18 @@ def get_model_names(task):
|
|
| 131 |
"""
|
| 132 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 133 |
- Model (a markdown link)
|
| 134 |
-
- GPU Energy (Wh)
|
| 135 |
- Score (a star rating based on energy_score)
|
| 136 |
For text_generation.csv only, also add the "Class" column from the CSV.
|
| 137 |
-
The final order is: Model, GPU Energy (Wh), Score, [Class].
|
| 138 |
"""
|
| 139 |
df = pd.read_csv('data/energy/' + task)
|
| 140 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 141 |
-
|
|
|
|
| 142 |
df['Model'] = df['model'].apply(make_link)
|
| 143 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 144 |
|
| 145 |
-
# If this CSV contains a "class" column (e.g., for Text Generation), add it.
|
| 146 |
if 'class' in df.columns:
|
| 147 |
df['Class'] = df['class']
|
| 148 |
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
|
@@ -162,7 +165,7 @@ def get_all_model_names():
|
|
| 162 |
for task in tasks:
|
| 163 |
df = pd.read_csv('data/energy/' + task)
|
| 164 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 165 |
-
df['GPU Energy (Wh)'] = df['total_gpu_energy'].
|
| 166 |
df['Model'] = df['model'].apply(make_link)
|
| 167 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 168 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
@@ -189,7 +192,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 189 |
with gr.Column(scale=1.3):
|
| 190 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 191 |
with gr.Column(scale=1):
|
| 192 |
-
# For text generation, the CSV is assumed to have a "class" column.
|
| 193 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
| 194 |
|
| 195 |
with gr.TabItem("Image Generation 📷"):
|
|
@@ -274,4 +276,4 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 274 |
"""Last updated: February 2025"""
|
| 275 |
)
|
| 276 |
|
| 277 |
-
demo.launch()
|
|
|
|
| 30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
| 31 |
into that many star characters wrapped in a span styled with color #3fa45bff
|
| 32 |
and with a font size increased to 2em.
|
| 33 |
+
The use of '!important' forces the styling immediately.
|
| 34 |
"""
|
| 35 |
try:
|
| 36 |
score_int = int(score)
|
| 37 |
except Exception:
|
| 38 |
score_int = 0
|
| 39 |
+
return f'<span style="color: #3fa45bff !important; font-size:2em !important;">{"★" * score_int}</span>'
|
| 40 |
|
| 41 |
def make_link(mname):
|
| 42 |
"""
|
|
|
|
| 50 |
def get_plots(task):
|
| 51 |
"""
|
| 52 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
| 53 |
+
X-axis: Numeric GPU Energy (Wh) (rounded to 4 decimals)
|
| 54 |
+
Y-axis: Display only the model name (extracted from the model field)
|
| 55 |
"""
|
| 56 |
df = pd.read_csv('data/energy/' + task)
|
| 57 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 58 |
+
# Use the raw energy (no multiplication) rounded to 4 decimals for plotting
|
| 59 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
| 60 |
+
# Create a column that displays only the model name (the part after '/')
|
| 61 |
+
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 62 |
|
| 63 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
| 64 |
color_map = {
|
|
|
|
| 69 |
5: "green"
|
| 70 |
}
|
| 71 |
|
|
|
|
| 72 |
fig = px.scatter(
|
| 73 |
df,
|
| 74 |
x="GPU Energy (Wh)",
|
| 75 |
+
y="Display Model",
|
| 76 |
custom_data=['energy_score'],
|
| 77 |
height=500,
|
| 78 |
width=800,
|
|
|
|
| 99 |
df = pd.read_csv('data/energy/' + task)
|
| 100 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 101 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
| 102 |
+
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 103 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 104 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 105 |
|
|
|
|
| 113 |
fig = px.scatter(
|
| 114 |
all_df,
|
| 115 |
x="GPU Energy (Wh)",
|
| 116 |
+
y="Display Model",
|
| 117 |
custom_data=['energy_score'],
|
| 118 |
height=500,
|
| 119 |
width=800,
|
|
|
|
| 134 |
"""
|
| 135 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 136 |
- Model (a markdown link)
|
| 137 |
+
- GPU Energy (Wh) formatted as a string with 4 decimal places
|
| 138 |
- Score (a star rating based on energy_score)
|
| 139 |
For text_generation.csv only, also add the "Class" column from the CSV.
|
| 140 |
+
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
| 141 |
"""
|
| 142 |
df = pd.read_csv('data/energy/' + task)
|
| 143 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 144 |
+
# Format the energy as a string with 4 decimals so that very small values display correctly
|
| 145 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 146 |
df['Model'] = df['model'].apply(make_link)
|
| 147 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 148 |
|
|
|
|
| 149 |
if 'class' in df.columns:
|
| 150 |
df['Class'] = df['class']
|
| 151 |
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
|
|
|
| 165 |
for task in tasks:
|
| 166 |
df = pd.read_csv('data/energy/' + task)
|
| 167 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 168 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 169 |
df['Model'] = df['model'].apply(make_link)
|
| 170 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 171 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
|
|
| 192 |
with gr.Column(scale=1.3):
|
| 193 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 194 |
with gr.Column(scale=1):
|
|
|
|
| 195 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
| 196 |
|
| 197 |
with gr.TabItem("Image Generation 📷"):
|
|
|
|
| 276 |
"""Last updated: February 2025"""
|
| 277 |
)
|
| 278 |
|
| 279 |
+
demo.launch()
|