Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,46 +30,51 @@ def format_stars(score):
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
def make_link(mname):
|
| 36 |
parts = str(mname).split('/')
|
| 37 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 39 |
|
|
|
|
|
|
|
| 40 |
def get_plots(task):
|
| 41 |
df = pd.read_csv('data/energy/' + task)
|
| 42 |
if df.columns[0].startswith("Unnamed:"):
|
| 43 |
df = df.iloc[:, 1:]
|
| 44 |
-
# Use the raw numeric value from the CSV
|
| 45 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
|
| 46 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
|
|
|
| 47 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 48 |
|
|
|
|
| 49 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
| 50 |
|
|
|
|
| 51 |
fig = px.scatter(
|
| 52 |
df,
|
| 53 |
-
x="
|
| 54 |
-
y="
|
| 55 |
color="energy_score",
|
| 56 |
custom_data=['energy_score'],
|
| 57 |
height=500,
|
| 58 |
width=800,
|
| 59 |
color_discrete_map=color_map
|
| 60 |
)
|
| 61 |
-
#
|
| 62 |
-
# but note that no formatting is applied to the x-axis ticks.
|
| 63 |
fig.update_traces(
|
| 64 |
hovertemplate="<br>".join([
|
| 65 |
-
"Model: %{
|
| 66 |
-
"GPU Energy (Wh): %{
|
| 67 |
"Energy Score: %{customdata[0]}"
|
| 68 |
])
|
| 69 |
)
|
| 70 |
fig.update_layout(
|
| 71 |
-
xaxis_title="
|
| 72 |
-
yaxis_title="
|
| 73 |
)
|
| 74 |
return fig
|
| 75 |
|
|
@@ -89,8 +94,8 @@ def get_all_plots():
|
|
| 89 |
|
| 90 |
fig = px.scatter(
|
| 91 |
all_df,
|
| 92 |
-
x="
|
| 93 |
-
y="
|
| 94 |
color="energy_score",
|
| 95 |
custom_data=['energy_score'],
|
| 96 |
height=500,
|
|
@@ -99,17 +104,19 @@ def get_all_plots():
|
|
| 99 |
)
|
| 100 |
fig.update_traces(
|
| 101 |
hovertemplate="<br>".join([
|
| 102 |
-
"Model: %{
|
| 103 |
-
"GPU Energy (Wh): %{
|
| 104 |
"Energy Score: %{customdata[0]}"
|
| 105 |
])
|
| 106 |
)
|
| 107 |
fig.update_layout(
|
| 108 |
-
xaxis_title="
|
| 109 |
-
yaxis_title="
|
| 110 |
)
|
| 111 |
return fig
|
| 112 |
|
|
|
|
|
|
|
| 113 |
def get_model_names(task):
|
| 114 |
df = pd.read_csv('data/energy/' + task)
|
| 115 |
if df.columns[0].startswith("Unnamed:"):
|
|
@@ -137,7 +144,8 @@ def get_all_model_names():
|
|
| 137 |
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
| 138 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 139 |
|
| 140 |
-
#
|
|
|
|
| 141 |
def get_text_generation_plots(model_class):
|
| 142 |
df = pd.read_csv('data/energy/text_generation.csv')
|
| 143 |
if df.columns[0].startswith("Unnamed:"):
|
|
@@ -145,7 +153,6 @@ def get_text_generation_plots(model_class):
|
|
| 145 |
# Filter by the selected model class if the "class" column exists
|
| 146 |
if 'class' in df.columns:
|
| 147 |
df = df[df['class'] == model_class]
|
| 148 |
-
# Use the raw numeric value from the CSV
|
| 149 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
|
| 150 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
| 151 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
@@ -154,8 +161,8 @@ def get_text_generation_plots(model_class):
|
|
| 154 |
|
| 155 |
fig = px.scatter(
|
| 156 |
df,
|
| 157 |
-
x="
|
| 158 |
-
y="
|
| 159 |
color="energy_score",
|
| 160 |
custom_data=['energy_score'],
|
| 161 |
height=500,
|
|
@@ -164,14 +171,14 @@ def get_text_generation_plots(model_class):
|
|
| 164 |
)
|
| 165 |
fig.update_traces(
|
| 166 |
hovertemplate="<br>".join([
|
| 167 |
-
"Model: %{
|
| 168 |
-
"GPU Energy (Wh): %{
|
| 169 |
"Energy Score: %{customdata[0]}"
|
| 170 |
])
|
| 171 |
)
|
| 172 |
fig.update_layout(
|
| 173 |
-
xaxis_title="
|
| 174 |
-
yaxis_title="
|
| 175 |
)
|
| 176 |
return fig
|
| 177 |
|
|
@@ -195,7 +202,8 @@ def update_text_generation(model_class):
|
|
| 195 |
table = get_text_generation_model_names(model_class)
|
| 196 |
return plot, table
|
| 197 |
|
| 198 |
-
#
|
|
|
|
| 199 |
demo = gr.Blocks(css="""
|
| 200 |
.gr-dataframe table {
|
| 201 |
table-layout: fixed;
|
|
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
+
# Render stars in black with a slightly larger font
|
| 34 |
+
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'
|
| 35 |
|
| 36 |
def make_link(mname):
|
| 37 |
parts = str(mname).split('/')
|
| 38 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 39 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 40 |
|
| 41 |
+
# --- Plot Functions (Axes swapped) ---
|
| 42 |
+
|
| 43 |
def get_plots(task):
|
| 44 |
df = pd.read_csv('data/energy/' + task)
|
| 45 |
if df.columns[0].startswith("Unnamed:"):
|
| 46 |
df = df.iloc[:, 1:]
|
| 47 |
+
# Use the raw numeric value from the CSV for GPU Energy
|
| 48 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
|
| 49 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
| 50 |
+
# Create a display model column for labeling
|
| 51 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 52 |
|
| 53 |
+
# Use the energy score to control color
|
| 54 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
| 55 |
|
| 56 |
+
# Now plot with the model name on the X axis and GPU Energy on the Y axis.
|
| 57 |
fig = px.scatter(
|
| 58 |
df,
|
| 59 |
+
x="Display Model",
|
| 60 |
+
y="total_gpu_energy",
|
| 61 |
color="energy_score",
|
| 62 |
custom_data=['energy_score'],
|
| 63 |
height=500,
|
| 64 |
width=800,
|
| 65 |
color_discrete_map=color_map
|
| 66 |
)
|
| 67 |
+
# Update hover text to show the model and GPU Energy (with 4 decimals)
|
|
|
|
| 68 |
fig.update_traces(
|
| 69 |
hovertemplate="<br>".join([
|
| 70 |
+
"Model: %{x}",
|
| 71 |
+
"GPU Energy (Wh): %{y:.4f}",
|
| 72 |
"Energy Score: %{customdata[0]}"
|
| 73 |
])
|
| 74 |
)
|
| 75 |
fig.update_layout(
|
| 76 |
+
xaxis_title="Model",
|
| 77 |
+
yaxis_title="GPU Energy (Wh)"
|
| 78 |
)
|
| 79 |
return fig
|
| 80 |
|
|
|
|
| 94 |
|
| 95 |
fig = px.scatter(
|
| 96 |
all_df,
|
| 97 |
+
x="Display Model",
|
| 98 |
+
y="total_gpu_energy",
|
| 99 |
color="energy_score",
|
| 100 |
custom_data=['energy_score'],
|
| 101 |
height=500,
|
|
|
|
| 104 |
)
|
| 105 |
fig.update_traces(
|
| 106 |
hovertemplate="<br>".join([
|
| 107 |
+
"Model: %{x}",
|
| 108 |
+
"GPU Energy (Wh): %{y:.4f}",
|
| 109 |
"Energy Score: %{customdata[0]}"
|
| 110 |
])
|
| 111 |
)
|
| 112 |
fig.update_layout(
|
| 113 |
+
xaxis_title="Model",
|
| 114 |
+
yaxis_title="GPU Energy (Wh)"
|
| 115 |
)
|
| 116 |
return fig
|
| 117 |
|
| 118 |
+
# --- Leaderboard Table Functions (unchanged except stars) ---
|
| 119 |
+
|
| 120 |
def get_model_names(task):
|
| 121 |
df = pd.read_csv('data/energy/' + task)
|
| 122 |
if df.columns[0].startswith("Unnamed:"):
|
|
|
|
| 144 |
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
| 145 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 146 |
|
| 147 |
+
# --- New functions for Text Generation filtering by model class (with swapped axes) ---
|
| 148 |
+
|
| 149 |
def get_text_generation_plots(model_class):
|
| 150 |
df = pd.read_csv('data/energy/text_generation.csv')
|
| 151 |
if df.columns[0].startswith("Unnamed:"):
|
|
|
|
| 153 |
# Filter by the selected model class if the "class" column exists
|
| 154 |
if 'class' in df.columns:
|
| 155 |
df = df[df['class'] == model_class]
|
|
|
|
| 156 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
|
| 157 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
| 158 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
|
|
| 161 |
|
| 162 |
fig = px.scatter(
|
| 163 |
df,
|
| 164 |
+
x="Display Model",
|
| 165 |
+
y="total_gpu_energy",
|
| 166 |
color="energy_score",
|
| 167 |
custom_data=['energy_score'],
|
| 168 |
height=500,
|
|
|
|
| 171 |
)
|
| 172 |
fig.update_traces(
|
| 173 |
hovertemplate="<br>".join([
|
| 174 |
+
"Model: %{x}",
|
| 175 |
+
"GPU Energy (Wh): %{y:.4f}",
|
| 176 |
"Energy Score: %{customdata[0]}"
|
| 177 |
])
|
| 178 |
)
|
| 179 |
fig.update_layout(
|
| 180 |
+
xaxis_title="Model",
|
| 181 |
+
yaxis_title="GPU Energy (Wh)"
|
| 182 |
)
|
| 183 |
return fig
|
| 184 |
|
|
|
|
| 202 |
table = get_text_generation_model_names(model_class)
|
| 203 |
return plot, table
|
| 204 |
|
| 205 |
+
# --- Build the Gradio Interface ---
|
| 206 |
+
|
| 207 |
demo = gr.Blocks(css="""
|
| 208 |
.gr-dataframe table {
|
| 209 |
table-layout: fixed;
|