Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,120 +1,177 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
from huggingface_hub import list_models
|
| 4 |
import plotly.express as px
|
| 5 |
|
| 6 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 7 |
CITATION_BUTTON_TEXT = r"""@misc{energystarai-leaderboard,
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def get_plots(task):
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
fig.update_traces(
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
)
|
|
|
|
| 35 |
return fig
|
| 36 |
|
| 37 |
def get_all_plots():
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
for task in tasks:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
fig.update_traces(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
)
|
|
|
|
| 56 |
return fig
|
| 57 |
|
| 58 |
-
def make_link(mname):
|
| 59 |
-
link = "["+ str(mname).split('/')[1] +'](https://huggingface.co/'+str(mname)+")"
|
| 60 |
-
return link
|
| 61 |
-
|
| 62 |
def get_model_names(task):
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
return model_names
|
| 76 |
|
| 77 |
def get_all_model_names():
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
for task in tasks:
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
all_df=all_df.drop_duplicates(subset=['model'])
|
| 91 |
-
all_df['Parameters'] = all_df['parameters'].apply(format_params)
|
| 92 |
-
all_df['Model'] = all_df['model'].apply(make_link)
|
| 93 |
-
all_df= all_df.sort_values('Total GPU Energy (Wh)')
|
| 94 |
-
model_names = all_df[['Model','Rating','Total GPU Energy (Wh)', 'Parameters']]
|
| 95 |
return model_names
|
| 96 |
|
| 97 |
-
|
| 98 |
-
def format_params(num):
|
| 99 |
-
if num > 1000000000:
|
| 100 |
-
if not num % 1000000000:
|
| 101 |
-
return f'{num // 1000000000}B'
|
| 102 |
-
return f'{round(num / 1000000000, 1)}B'
|
| 103 |
-
return f'{num // 1000000}M'
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
demo = gr.Blocks()
|
| 108 |
|
| 109 |
with demo:
|
| 110 |
gr.Markdown(
|
| 111 |
"""# AI Energy Score Leaderboard - v.0 (2024) 🌎 💻 🌟
|
| 112 |
-
|
| 113 |
-
|
| 114 |
)
|
| 115 |
gr.Markdown(
|
| 116 |
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)!"""
|
| 117 |
-
|
|
|
|
| 118 |
with gr.Tabs():
|
| 119 |
with gr.TabItem("Text Generation 💬"):
|
| 120 |
with gr.Row():
|
|
@@ -122,91 +179,87 @@ with demo:
|
|
| 122 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 123 |
with gr.Column(scale=1):
|
| 124 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
| 125 |
-
|
| 126 |
with gr.TabItem("Image Generation 📷"):
|
| 127 |
with gr.Row():
|
| 128 |
with gr.Column():
|
| 129 |
plot = gr.Plot(get_plots('image_generation.csv'))
|
| 130 |
with gr.Column():
|
| 131 |
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
|
| 132 |
-
|
| 133 |
with gr.TabItem("Text Classification 🎭"):
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column():
|
| 136 |
plot = gr.Plot(get_plots('text_classification.csv'))
|
| 137 |
with gr.Column():
|
| 138 |
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
|
| 139 |
-
|
| 140 |
with gr.TabItem("Image Classification 🖼️"):
|
| 141 |
with gr.Row():
|
| 142 |
with gr.Column():
|
| 143 |
plot = gr.Plot(get_plots('image_classification.csv'))
|
| 144 |
with gr.Column():
|
| 145 |
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
|
| 146 |
-
|
| 147 |
with gr.TabItem("Image Captioning 📝"):
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column():
|
| 150 |
plot = gr.Plot(get_plots('image_captioning.csv'))
|
| 151 |
with gr.Column():
|
| 152 |
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
|
|
|
|
| 153 |
with gr.TabItem("Summarization 📃"):
|
| 154 |
with gr.Row():
|
| 155 |
with gr.Column():
|
| 156 |
plot = gr.Plot(get_plots('summarization.csv'))
|
| 157 |
with gr.Column():
|
| 158 |
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
|
| 159 |
-
|
| 160 |
-
with gr.TabItem("Automatic Speech Recognition 💬
|
| 161 |
with gr.Row():
|
| 162 |
with gr.Column():
|
| 163 |
plot = gr.Plot(get_plots('asr.csv'))
|
| 164 |
with gr.Column():
|
| 165 |
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
|
| 166 |
-
|
| 167 |
with gr.TabItem("Object Detection 🚘"):
|
| 168 |
with gr.Row():
|
| 169 |
with gr.Column():
|
| 170 |
plot = gr.Plot(get_plots('object_detection.csv'))
|
| 171 |
with gr.Column():
|
| 172 |
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
|
| 173 |
-
|
| 174 |
with gr.TabItem("Sentence Similarity 📚"):
|
| 175 |
with gr.Row():
|
| 176 |
with gr.Column():
|
| 177 |
plot = gr.Plot(get_plots('sentence_similarity.csv'))
|
| 178 |
with gr.Column():
|
| 179 |
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
|
| 180 |
-
|
| 181 |
with gr.TabItem("Extractive QA ❔"):
|
| 182 |
with gr.Row():
|
| 183 |
with gr.Column():
|
| 184 |
plot = gr.Plot(get_plots('question_answering.csv'))
|
| 185 |
with gr.Column():
|
| 186 |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
|
| 187 |
-
|
| 188 |
with gr.TabItem("All Tasks 💡"):
|
| 189 |
with gr.Row():
|
| 190 |
with gr.Column():
|
| 191 |
plot = gr.Plot(get_all_plots)
|
| 192 |
with gr.Column():
|
| 193 |
table = gr.Dataframe(get_all_model_names, datatype="markdown")
|
| 194 |
-
|
| 195 |
-
with gr.Accordion("Methodology", open = False):
|
| 196 |
-
gr.Markdown(
|
| 197 |
-
"""For each of the ten tasks above, we created a custom dataset with 1,000 entries (see all of the datasets on our [org Hub page](https://huggingface.co/EnergyStarAI)).
|
| 198 |
-
We then tested each of the models from the leaderboard on the appropriate task on Nvidia H100 GPUs, measuring the energy consumed using [Code Carbon](https://mlco2.github.io/codecarbon/), an open-source Python package for tracking the environmental impacts of code.
|
| 199 |
-
We developed and used a [Docker container](https://github.com/huggingface/EnergyStarAI/) to maximize the reproducibility of results, and to enable members of the community to benchmark internal models.
|
| 200 |
-
Reach out to us if you want to collaborate!
|
| 201 |
-
""")
|
| 202 |
with gr.Accordion("📙 Citation", open=False):
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
gr.Markdown(
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import plotly.express as px
|
| 4 |
|
| 5 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 6 |
CITATION_BUTTON_TEXT = r"""@misc{energystarai-leaderboard,
|
| 7 |
+
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
|
| 8 |
+
title = {AI Energy Score Leaderboard v.0},
|
| 9 |
+
year = {2024},
|
| 10 |
+
publisher = {Hugging Face},
|
| 11 |
+
howpublished = "\url{https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard}",
|
| 12 |
+
}"""
|
| 13 |
+
|
| 14 |
+
# List of tasks (CSV filenames)
|
| 15 |
+
tasks = [
|
| 16 |
+
'asr.csv',
|
| 17 |
+
'object_detection.csv',
|
| 18 |
+
'text_classification.csv',
|
| 19 |
+
'image_captioning.csv',
|
| 20 |
+
'question_answering.csv',
|
| 21 |
+
'text_generation.csv',
|
| 22 |
+
'image_classification.csv',
|
| 23 |
+
'sentence_similarity.csv',
|
| 24 |
+
'image_generation.csv',
|
| 25 |
+
'summarization.csv'
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
def format_stars(score):
|
| 29 |
+
"""
|
| 30 |
+
Convert the energy_score (assumed to be an integer from 1 to 5)
|
| 31 |
+
into that many star characters wrapped in a span with the given color.
|
| 32 |
+
"""
|
| 33 |
+
try:
|
| 34 |
+
score_int = int(score)
|
| 35 |
+
except Exception:
|
| 36 |
+
score_int = 0
|
| 37 |
+
return f'<span style="color: #3fa45bff; font-size:1.2em;">{"★" * score_int}</span>'
|
| 38 |
+
|
| 39 |
+
def make_link(mname):
|
| 40 |
+
"""
|
| 41 |
+
Create a markdown link from the model identifier.
|
| 42 |
+
For example, if mname is "org/model", display "model" and link to its HF page.
|
| 43 |
+
"""
|
| 44 |
+
parts = str(mname).split('/')
|
| 45 |
+
display_name = parts[1] if len(parts) > 1 else mname
|
| 46 |
+
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 47 |
|
| 48 |
def get_plots(task):
|
| 49 |
+
"""
|
| 50 |
+
Read the energy CSV for a given task and return a Plotly scatter plot.
|
| 51 |
+
The y-axis shows the total GPU energy (Wh) and the color is determined by energy_score.
|
| 52 |
+
"""
|
| 53 |
+
df = pd.read_csv('data/energy/' + task)
|
| 54 |
+
# Ensure energy_score is an integer (for discrete color mapping)
|
| 55 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 56 |
+
# Convert kWh to Wh and round to 4 decimal places.
|
| 57 |
+
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
|
| 58 |
+
|
| 59 |
+
# Define a 5-level color mapping: 1 = red, 5 = green.
|
| 60 |
+
color_map = {
|
| 61 |
+
1: "red",
|
| 62 |
+
2: "orange",
|
| 63 |
+
3: "yellow",
|
| 64 |
+
4: "lightgreen",
|
| 65 |
+
5: "green"
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
fig = px.scatter(
|
| 69 |
+
df,
|
| 70 |
+
x="model",
|
| 71 |
+
y="Total GPU Energy (Wh)",
|
| 72 |
+
custom_data=['energy_score'],
|
| 73 |
+
height=500,
|
| 74 |
+
width=800,
|
| 75 |
+
color="energy_score",
|
| 76 |
+
color_discrete_map=color_map
|
| 77 |
+
)
|
| 78 |
fig.update_traces(
|
| 79 |
+
hovertemplate="<br>".join([
|
| 80 |
+
"Model: %{x}",
|
| 81 |
+
"Total Energy (Wh): %{y}",
|
| 82 |
+
"Energy Score: %{customdata[0]}"
|
| 83 |
+
])
|
| 84 |
)
|
| 85 |
+
fig.update_layout(xaxis_title="Model", yaxis_title="Total GPU Energy (Wh)")
|
| 86 |
return fig
|
| 87 |
|
| 88 |
def get_all_plots():
|
| 89 |
+
"""
|
| 90 |
+
Combine data from all tasks and return a scatter plot.
|
| 91 |
+
Duplicate models (if any) are dropped.
|
| 92 |
+
"""
|
| 93 |
+
all_df = pd.DataFrame()
|
| 94 |
for task in tasks:
|
| 95 |
+
df = pd.read_csv('data/energy/' + task)
|
| 96 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 97 |
+
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
|
| 98 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 99 |
+
all_df = all_df.drop_duplicates(subset=['model'])
|
| 100 |
+
|
| 101 |
+
color_map = {
|
| 102 |
+
1: "red",
|
| 103 |
+
2: "orange",
|
| 104 |
+
3: "yellow",
|
| 105 |
+
4: "lightgreen",
|
| 106 |
+
5: "green"
|
| 107 |
+
}
|
| 108 |
+
fig = px.scatter(
|
| 109 |
+
all_df,
|
| 110 |
+
x="model",
|
| 111 |
+
y="Total GPU Energy (Wh)",
|
| 112 |
+
custom_data=['energy_score'],
|
| 113 |
+
height=500,
|
| 114 |
+
width=800,
|
| 115 |
+
color="energy_score",
|
| 116 |
+
color_discrete_map=color_map
|
| 117 |
+
)
|
| 118 |
fig.update_traces(
|
| 119 |
+
hovertemplate="<br>".join([
|
| 120 |
+
"Model: %{x}",
|
| 121 |
+
"Total Energy (Wh): %{y}",
|
| 122 |
+
"Energy Score: %{customdata[0]}"
|
| 123 |
+
])
|
| 124 |
)
|
| 125 |
+
fig.update_layout(xaxis_title="Model", yaxis_title="Total GPU Energy (Wh)")
|
| 126 |
return fig
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def get_model_names(task):
|
| 129 |
+
"""
|
| 130 |
+
For a given task, load the energy CSV and return a dataframe with three columns:
|
| 131 |
+
- Model (a markdown link),
|
| 132 |
+
- Rating (the star rating based on energy_score),
|
| 133 |
+
- Total GPU Energy (Wh)
|
| 134 |
+
"""
|
| 135 |
+
df = pd.read_csv('data/energy/' + task)
|
| 136 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 137 |
+
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
|
| 138 |
+
df['Model'] = df['model'].apply(make_link)
|
| 139 |
+
df['Rating'] = df['energy_score'].apply(format_stars)
|
| 140 |
+
df = df.sort_values(by='Total GPU Energy (Wh)')
|
| 141 |
+
model_names = df[['Model', 'Rating', 'Total GPU Energy (Wh)']]
|
| 142 |
return model_names
|
| 143 |
|
| 144 |
def get_all_model_names():
|
| 145 |
+
"""
|
| 146 |
+
Combine data from all tasks and return a table of models.
|
| 147 |
+
Duplicate models are dropped.
|
| 148 |
+
"""
|
| 149 |
+
all_df = pd.DataFrame()
|
| 150 |
for task in tasks:
|
| 151 |
+
df = pd.read_csv('data/energy/' + task)
|
| 152 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 153 |
+
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
|
| 154 |
+
df['Model'] = df['model'].apply(make_link)
|
| 155 |
+
df['Rating'] = df['energy_score'].apply(format_stars)
|
| 156 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 157 |
+
all_df = all_df.drop_duplicates(subset=['model'])
|
| 158 |
+
all_df = all_df.sort_values(by='Total GPU Energy (Wh)')
|
| 159 |
+
model_names = all_df[['Model', 'Rating', 'Total GPU Energy (Wh)']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
return model_names
|
| 161 |
|
| 162 |
+
# Build the Gradio interface.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
demo = gr.Blocks()
|
| 164 |
|
| 165 |
with demo:
|
| 166 |
gr.Markdown(
|
| 167 |
"""# AI Energy Score Leaderboard - v.0 (2024) 🌎 💻 🌟
|
| 168 |
+
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/EnergyStarAI)
|
| 169 |
+
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
|
| 170 |
)
|
| 171 |
gr.Markdown(
|
| 172 |
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)!"""
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
with gr.Tabs():
|
| 176 |
with gr.TabItem("Text Generation 💬"):
|
| 177 |
with gr.Row():
|
|
|
|
| 179 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
| 180 |
with gr.Column(scale=1):
|
| 181 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
| 182 |
+
|
| 183 |
with gr.TabItem("Image Generation 📷"):
|
| 184 |
with gr.Row():
|
| 185 |
with gr.Column():
|
| 186 |
plot = gr.Plot(get_plots('image_generation.csv'))
|
| 187 |
with gr.Column():
|
| 188 |
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
|
| 189 |
+
|
| 190 |
with gr.TabItem("Text Classification 🎭"):
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Column():
|
| 193 |
plot = gr.Plot(get_plots('text_classification.csv'))
|
| 194 |
with gr.Column():
|
| 195 |
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
|
| 196 |
+
|
| 197 |
with gr.TabItem("Image Classification 🖼️"):
|
| 198 |
with gr.Row():
|
| 199 |
with gr.Column():
|
| 200 |
plot = gr.Plot(get_plots('image_classification.csv'))
|
| 201 |
with gr.Column():
|
| 202 |
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
|
| 203 |
+
|
| 204 |
with gr.TabItem("Image Captioning 📝"):
|
| 205 |
with gr.Row():
|
| 206 |
with gr.Column():
|
| 207 |
plot = gr.Plot(get_plots('image_captioning.csv'))
|
| 208 |
with gr.Column():
|
| 209 |
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
|
| 210 |
+
|
| 211 |
with gr.TabItem("Summarization 📃"):
|
| 212 |
with gr.Row():
|
| 213 |
with gr.Column():
|
| 214 |
plot = gr.Plot(get_plots('summarization.csv'))
|
| 215 |
with gr.Column():
|
| 216 |
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
|
| 217 |
+
|
| 218 |
+
with gr.TabItem("Automatic Speech Recognition 💬"):
|
| 219 |
with gr.Row():
|
| 220 |
with gr.Column():
|
| 221 |
plot = gr.Plot(get_plots('asr.csv'))
|
| 222 |
with gr.Column():
|
| 223 |
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
|
| 224 |
+
|
| 225 |
with gr.TabItem("Object Detection 🚘"):
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
plot = gr.Plot(get_plots('object_detection.csv'))
|
| 229 |
with gr.Column():
|
| 230 |
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
|
| 231 |
+
|
| 232 |
with gr.TabItem("Sentence Similarity 📚"):
|
| 233 |
with gr.Row():
|
| 234 |
with gr.Column():
|
| 235 |
plot = gr.Plot(get_plots('sentence_similarity.csv'))
|
| 236 |
with gr.Column():
|
| 237 |
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
|
| 238 |
+
|
| 239 |
with gr.TabItem("Extractive QA ❔"):
|
| 240 |
with gr.Row():
|
| 241 |
with gr.Column():
|
| 242 |
plot = gr.Plot(get_plots('question_answering.csv'))
|
| 243 |
with gr.Column():
|
| 244 |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
|
| 245 |
+
|
| 246 |
with gr.TabItem("All Tasks 💡"):
|
| 247 |
with gr.Row():
|
| 248 |
with gr.Column():
|
| 249 |
plot = gr.Plot(get_all_plots)
|
| 250 |
with gr.Column():
|
| 251 |
table = gr.Dataframe(get_all_model_names, datatype="markdown")
|
| 252 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
with gr.Accordion("📙 Citation", open=False):
|
| 254 |
+
citation_button = gr.Textbox(
|
| 255 |
+
value=CITATION_BUTTON_TEXT,
|
| 256 |
+
label=CITATION_BUTTON_LABEL,
|
| 257 |
+
elem_id="citation-button",
|
| 258 |
+
lines=10,
|
| 259 |
+
show_copy_button=True,
|
| 260 |
+
)
|
| 261 |
gr.Markdown(
|
| 262 |
+
"""Last updated: February 2025"""
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
demo.launch()
|