Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -32,7 +32,6 @@ def format_stars(score):
|
|
| 32 |
score_int = int(score)
|
| 33 |
except Exception:
|
| 34 |
score_int = 0
|
| 35 |
-
# Render stars in black with a slightly larger font.
|
| 36 |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
|
| 37 |
|
| 38 |
def make_link(mname):
|
|
@@ -40,102 +39,54 @@ def make_link(mname):
|
|
| 40 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 41 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
| 42 |
|
| 43 |
-
def extract_link_text(html_link):
|
| 44 |
-
"""Extracts the inner text from an HTML link."""
|
| 45 |
-
start = html_link.find('>') + 1
|
| 46 |
-
end = html_link.rfind('</a>')
|
| 47 |
-
if start > 0 and end > start:
|
| 48 |
-
return html_link[start:end]
|
| 49 |
-
else:
|
| 50 |
-
return html_link
|
| 51 |
-
|
| 52 |
def generate_html_table_from_df(df):
|
| 53 |
"""
|
| 54 |
-
|
| 55 |
-
generate an HTML table with three columns:
|
| 56 |
-
- Model (the link, with a fixed width based on the longest model name)
|
| 57 |
-
- GPU Energy (Wh) plus a horizontal bar whose width is proportional
|
| 58 |
-
to the energy value relative to the maximum in the table.
|
| 59 |
-
- Score (displayed as stars)
|
| 60 |
"""
|
| 61 |
-
# Compute a static width (in pixels) for the Model column based on the longest model name.
|
| 62 |
-
if not df.empty:
|
| 63 |
-
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
| 64 |
-
else:
|
| 65 |
-
max_length = 10
|
| 66 |
-
# Multiply by an estimated average character width (10 pixels) and add some extra padding.
|
| 67 |
-
static_width = max_length * 10 + 16
|
| 68 |
-
|
| 69 |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
|
| 70 |
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
|
|
|
|
| 71 |
html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
|
| 72 |
html += '<thead><tr style="background-color: #f2f2f2;">'
|
| 73 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
| 74 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
| 75 |
-
html += '<th style="text-align: left; padding: 8px;" title="5 is most efficient, 1 is least. Relative energy efficiency score
|
| 76 |
-
html += '</tr></thead>'
|
| 77 |
-
|
| 78 |
-
# Apply the static width to the Model column header.
|
| 79 |
-
html += f'<thead><tr style="background-color: #f2f2f2;">'
|
| 80 |
-
html += f'<th style="text-align: left; padding: 8px; width: {static_width}px;">Model</th>'
|
| 81 |
-
html += '<th style="text-align: left; padding: 8px;">GPU Energy (Wh)</th>'
|
| 82 |
-
html += '<th style="text-align: left; padding: 8px;">Score</th>'
|
| 83 |
html += '</tr></thead>'
|
| 84 |
html += '<tbody>'
|
|
|
|
| 85 |
for _, row in df.iterrows():
|
| 86 |
energy_numeric = row['gpu_energy_numeric']
|
| 87 |
-
energy_str = f"{energy_numeric:.2f}"
|
| 88 |
-
# Compute the relative width (as a percentage)
|
| 89 |
bar_width = (energy_numeric / max_energy) * 100
|
| 90 |
score_val = row['energy_score']
|
| 91 |
bar_color = color_map.get(str(score_val), "gray")
|
|
|
|
| 92 |
html += '<tr>'
|
| 93 |
-
|
| 94 |
-
html += f'<td style="padding: 8px;
|
| 95 |
-
html +=
|
| 96 |
-
f'<td style="padding: 8px;">{energy_str}<br>'
|
| 97 |
-
f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
|
| 98 |
-
)
|
| 99 |
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
|
| 100 |
html += '</tr>'
|
|
|
|
| 101 |
html += '</tbody></table>'
|
| 102 |
return html
|
| 103 |
|
| 104 |
-
|
| 105 |
-
def zip_csv_files():
|
| 106 |
-
data_dir = "data/energy"
|
| 107 |
-
zip_filename = "data.zip"
|
| 108 |
-
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
|
| 109 |
-
for filename in os.listdir(data_dir):
|
| 110 |
-
if filename.endswith(".csv"):
|
| 111 |
-
filepath = os.path.join(data_dir, filename)
|
| 112 |
-
zipf.write(filepath, arcname=filename)
|
| 113 |
-
return zip_filename
|
| 114 |
-
|
| 115 |
-
def get_zip_data_link():
|
| 116 |
-
"""Creates a data URI download link for the ZIP file."""
|
| 117 |
-
zip_filename = zip_csv_files()
|
| 118 |
-
with open(zip_filename, "rb") as f:
|
| 119 |
-
data = f.read()
|
| 120 |
-
b64 = base64.b64encode(data).decode()
|
| 121 |
-
href = f'<a href="data:application/zip;base64,{b64}" download="data.zip" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Download Data</a>'
|
| 122 |
-
return href
|
| 123 |
-
|
| 124 |
-
# --- Modified functions to include a sort_order parameter ---
|
| 125 |
-
def get_model_names_html(task, sort_order="High to Low"):
|
| 126 |
df = pd.read_csv('data/energy/' + task)
|
| 127 |
if df.columns[0].startswith("Unnamed:"):
|
| 128 |
df = df.iloc[:, 1:]
|
| 129 |
df['energy_score'] = df['energy_score'].astype(int)
|
| 130 |
-
# Convert kWh to Wh:
|
| 131 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 132 |
df['Model'] = df['model'].apply(make_link)
|
| 133 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 134 |
-
ascending = True
|
| 135 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 136 |
return generate_html_table_from_df(df)
|
| 137 |
|
| 138 |
-
def
|
|
|
|
|
|
|
|
|
|
| 139 |
all_df = pd.DataFrame()
|
| 140 |
for task in tasks:
|
| 141 |
df = pd.read_csv('data/energy/' + task)
|
|
@@ -147,69 +98,11 @@ def get_all_model_names_html(sort_order="High to Low"):
|
|
| 147 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 148 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 149 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 150 |
-
ascending = True
|
| 151 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 152 |
return generate_html_table_from_df(all_df)
|
| 153 |
|
| 154 |
-
def get_text_generation_model_names_html(model_class, sort_order="High to Low"):
|
| 155 |
-
df = pd.read_csv('data/energy/text_generation.csv')
|
| 156 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 157 |
-
df = df.iloc[:, 1:]
|
| 158 |
-
if 'class' in df.columns:
|
| 159 |
-
df = df[df['class'] == model_class]
|
| 160 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
| 161 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 162 |
-
df['Model'] = df['model'].apply(make_link)
|
| 163 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
| 164 |
-
ascending = True if sort_order == "Low to High" else False
|
| 165 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 166 |
-
return generate_html_table_from_df(df)
|
| 167 |
-
|
| 168 |
-
# --- Update functions for dropdown changes ---
|
| 169 |
-
|
| 170 |
-
# For Text Generation, two dropdowns: model class and sort order.
|
| 171 |
-
def update_text_generation(selected_display, sort_order):
|
| 172 |
-
mapping = {
|
| 173 |
-
"A (Single Consumer GPU) <20B parameters": "A",
|
| 174 |
-
"B (Single Cloud GPU) 20-66B parameters": "B",
|
| 175 |
-
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
| 176 |
-
}
|
| 177 |
-
model_class = mapping.get(selected_display, "A")
|
| 178 |
-
return get_text_generation_model_names_html(model_class, sort_order)
|
| 179 |
-
|
| 180 |
-
# For the other tabs, each update function simply takes the sort_order.
|
| 181 |
-
def update_image_generation(sort_order):
|
| 182 |
-
return get_model_names_html('image_generation.csv', sort_order)
|
| 183 |
-
|
| 184 |
-
def update_text_classification(sort_order):
|
| 185 |
-
return get_model_names_html('text_classification.csv', sort_order)
|
| 186 |
-
|
| 187 |
-
def update_image_classification(sort_order):
|
| 188 |
-
return get_model_names_html('image_classification.csv', sort_order)
|
| 189 |
-
|
| 190 |
-
def update_image_captioning(sort_order):
|
| 191 |
-
return get_model_names_html('image_captioning.csv', sort_order)
|
| 192 |
-
|
| 193 |
-
def update_summarization(sort_order):
|
| 194 |
-
return get_model_names_html('summarization.csv', sort_order)
|
| 195 |
-
|
| 196 |
-
def update_asr(sort_order):
|
| 197 |
-
return get_model_names_html('asr.csv', sort_order)
|
| 198 |
-
|
| 199 |
-
def update_object_detection(sort_order):
|
| 200 |
-
return get_model_names_html('object_detection.csv', sort_order)
|
| 201 |
-
|
| 202 |
-
def update_sentence_similarity(sort_order):
|
| 203 |
-
return get_model_names_html('sentence_similarity.csv', sort_order)
|
| 204 |
-
|
| 205 |
-
def update_extractive_qa(sort_order):
|
| 206 |
-
return get_model_names_html('question_answering.csv', sort_order)
|
| 207 |
-
|
| 208 |
-
def update_all_tasks(sort_order):
|
| 209 |
-
return get_all_model_names_html(sort_order)
|
| 210 |
-
|
| 211 |
# --- Build the Gradio Interface ---
|
| 212 |
-
|
| 213 |
demo = gr.Blocks(css="""
|
| 214 |
.gr-dataframe table {
|
| 215 |
table-layout: fixed;
|
|
@@ -224,142 +117,17 @@ demo = gr.Blocks(css="""
|
|
| 224 |
""")
|
| 225 |
|
| 226 |
with demo:
|
| 227 |
-
gr.
|
| 228 |
-
|
| 229 |
-
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) — Select different tasks to see scored models."""
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
# Header links (using a row of components, including a Download Data link)
|
| 233 |
-
with gr.Row():
|
| 234 |
-
submission_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>')
|
| 235 |
-
label_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Label Generator</a>')
|
| 236 |
-
faq_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#faq" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>')
|
| 237 |
-
documentation_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>')
|
| 238 |
-
download_link = gr.HTML(get_zip_data_link())
|
| 239 |
-
community_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>')
|
| 240 |
|
| 241 |
with gr.Tabs():
|
| 242 |
-
# --- Text Generation Tab ---
|
| 243 |
-
with gr.TabItem("Text Generation 💬"):
|
| 244 |
-
with gr.Row():
|
| 245 |
-
model_class_options = [
|
| 246 |
-
"A (Single Consumer GPU) <20B parameters",
|
| 247 |
-
"B (Single Cloud GPU) 20-66B parameters",
|
| 248 |
-
"C (Multiple Cloud GPUs) >66B parameters"
|
| 249 |
-
]
|
| 250 |
-
model_class_dropdown = gr.Dropdown(
|
| 251 |
-
choices=model_class_options,
|
| 252 |
-
label="Select Model Class",
|
| 253 |
-
value=model_class_options[0]
|
| 254 |
-
)
|
| 255 |
-
sort_dropdown_tg = gr.Dropdown(
|
| 256 |
-
choices=["Low to High", "High to Low"],
|
| 257 |
-
label="Sort",
|
| 258 |
-
value="High to Low"
|
| 259 |
-
)
|
| 260 |
-
tg_table = gr.HTML(get_text_generation_model_names_html("A", "High to Low"))
|
| 261 |
-
# When either dropdown changes, update the table.
|
| 262 |
-
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
|
| 263 |
-
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
|
| 264 |
-
|
| 265 |
-
# --- Image Generation Tab ---
|
| 266 |
-
with gr.TabItem("Image Generation 📷"):
|
| 267 |
-
sort_dropdown_img = gr.Dropdown(
|
| 268 |
-
choices=["Low to High", "High to Low"],
|
| 269 |
-
label="Sort",
|
| 270 |
-
value="High to Low"
|
| 271 |
-
)
|
| 272 |
-
img_table = gr.HTML(get_model_names_html('image_generation.csv', "High to Low"))
|
| 273 |
-
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=img_table)
|
| 274 |
-
|
| 275 |
-
# --- Text Classification Tab ---
|
| 276 |
-
with gr.TabItem("Text Classification 🎭"):
|
| 277 |
-
sort_dropdown_tc = gr.Dropdown(
|
| 278 |
-
choices=["Low to High", "High to Low"],
|
| 279 |
-
label="Sort",
|
| 280 |
-
value="High to Low"
|
| 281 |
-
)
|
| 282 |
-
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "High to Low"))
|
| 283 |
-
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=tc_table)
|
| 284 |
-
|
| 285 |
-
# --- Image Classification Tab ---
|
| 286 |
-
with gr.TabItem("Image Classification 🖼️"):
|
| 287 |
-
sort_dropdown_ic = gr.Dropdown(
|
| 288 |
-
choices=["Low to High", "High to Low"],
|
| 289 |
-
label="Sort",
|
| 290 |
-
value="High to Low"
|
| 291 |
-
)
|
| 292 |
-
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "High to Low"))
|
| 293 |
-
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=ic_table)
|
| 294 |
-
|
| 295 |
-
# --- Image Captioning Tab ---
|
| 296 |
-
with gr.TabItem("Image Captioning 📝"):
|
| 297 |
-
sort_dropdown_icap = gr.Dropdown(
|
| 298 |
-
choices=["Low to High", "High to Low"],
|
| 299 |
-
label="Sort",
|
| 300 |
-
value="High to Low"
|
| 301 |
-
)
|
| 302 |
-
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "High to Low"))
|
| 303 |
-
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=icap_table)
|
| 304 |
-
|
| 305 |
-
# --- Summarization Tab ---
|
| 306 |
-
with gr.TabItem("Summarization 📃"):
|
| 307 |
-
sort_dropdown_sum = gr.Dropdown(
|
| 308 |
-
choices=["Low to High", "High to Low"],
|
| 309 |
-
label="Sort",
|
| 310 |
-
value="High to Low"
|
| 311 |
-
)
|
| 312 |
-
sum_table = gr.HTML(get_model_names_html('summarization.csv', "High to Low"))
|
| 313 |
-
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=sum_table)
|
| 314 |
-
|
| 315 |
-
# --- Automatic Speech Recognition Tab ---
|
| 316 |
-
with gr.TabItem("Automatic Speech Recognition 💬"):
|
| 317 |
-
sort_dropdown_asr = gr.Dropdown(
|
| 318 |
-
choices=["Low to High", "High to Low"],
|
| 319 |
-
label="Sort",
|
| 320 |
-
value="High to Low"
|
| 321 |
-
)
|
| 322 |
-
asr_table = gr.HTML(get_model_names_html('asr.csv', "High to Low"))
|
| 323 |
-
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=asr_table)
|
| 324 |
-
|
| 325 |
-
# --- Object Detection Tab ---
|
| 326 |
-
with gr.TabItem("Object Detection 🚘"):
|
| 327 |
-
sort_dropdown_od = gr.Dropdown(
|
| 328 |
-
choices=["Low to High", "High to Low"],
|
| 329 |
-
label="Sort",
|
| 330 |
-
value="High to Low"
|
| 331 |
-
)
|
| 332 |
-
od_table = gr.HTML(get_model_names_html('object_detection.csv', "High to Low"))
|
| 333 |
-
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=od_table)
|
| 334 |
-
|
| 335 |
-
# --- Sentence Similarity Tab ---
|
| 336 |
-
with gr.TabItem("Sentence Similarity 📚"):
|
| 337 |
-
sort_dropdown_ss = gr.Dropdown(
|
| 338 |
-
choices=["Low to High", "High to Low"],
|
| 339 |
-
label="Sort",
|
| 340 |
-
value="High to Low"
|
| 341 |
-
)
|
| 342 |
-
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "High to Low"))
|
| 343 |
-
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=ss_table)
|
| 344 |
-
|
| 345 |
-
# --- Extractive QA Tab ---
|
| 346 |
-
with gr.TabItem("Extractive QA ❔"):
|
| 347 |
-
sort_dropdown_qa = gr.Dropdown(
|
| 348 |
-
choices=["Low to High", "High to Low"],
|
| 349 |
-
label="Sort",
|
| 350 |
-
value="High to Low"
|
| 351 |
-
)
|
| 352 |
-
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "High to Low"))
|
| 353 |
-
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=qa_table)
|
| 354 |
-
|
| 355 |
-
# --- All Tasks Tab ---
|
| 356 |
with gr.TabItem("All Tasks 💡"):
|
| 357 |
sort_dropdown_all = gr.Dropdown(
|
| 358 |
choices=["Low to High", "High to Low"],
|
| 359 |
label="Sort",
|
| 360 |
-
value="
|
| 361 |
)
|
| 362 |
-
all_table = gr.HTML(get_all_model_names_html("
|
| 363 |
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
|
| 364 |
|
| 365 |
with gr.Accordion("📙 Citation", open=False):
|
|
@@ -372,4 +140,4 @@ with demo:
|
|
| 372 |
)
|
| 373 |
gr.Markdown("""Last updated: February 2025""")
|
| 374 |
|
| 375 |
-
demo.launch()
|
|
|
|
| 32 |
score_int = int(score)
|
| 33 |
except Exception:
|
| 34 |
score_int = 0
|
|
|
|
| 35 |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
|
| 36 |
|
| 37 |
def make_link(mname):
|
|
|
|
| 39 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 40 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def generate_html_table_from_df(df):
|
| 43 |
"""
|
| 44 |
+
Generates an HTML table with tooltips for column headers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
|
| 47 |
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
|
| 48 |
+
|
| 49 |
html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
|
| 50 |
html += '<thead><tr style="background-color: #f2f2f2;">'
|
| 51 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
| 52 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
| 53 |
+
html += '<th style="text-align: left; padding: 8px;" title="5 is most efficient, 1 is least. Relative energy efficiency score at launch">Score</th>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
html += '</tr></thead>'
|
| 55 |
html += '<tbody>'
|
| 56 |
+
|
| 57 |
for _, row in df.iterrows():
|
| 58 |
energy_numeric = row['gpu_energy_numeric']
|
| 59 |
+
energy_str = f"{energy_numeric:.2f}" # Display GPU energy with 2 decimal places
|
|
|
|
| 60 |
bar_width = (energy_numeric / max_energy) * 100
|
| 61 |
score_val = row['energy_score']
|
| 62 |
bar_color = color_map.get(str(score_val), "gray")
|
| 63 |
+
|
| 64 |
html += '<tr>'
|
| 65 |
+
html += f'<td style="padding: 8px;">{row["Model"]}</td>'
|
| 66 |
+
html += f'<td style="padding: 8px;">{energy_str}<br>'
|
| 67 |
+
html += f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
|
|
|
|
|
|
|
|
|
|
| 68 |
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
|
| 69 |
html += '</tr>'
|
| 70 |
+
|
| 71 |
html += '</tbody></table>'
|
| 72 |
return html
|
| 73 |
|
| 74 |
+
def get_model_names_html(task, sort_order="Low to High"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
df = pd.read_csv('data/energy/' + task)
|
| 76 |
if df.columns[0].startswith("Unnamed:"):
|
| 77 |
df = df.iloc[:, 1:]
|
| 78 |
df['energy_score'] = df['energy_score'].astype(int)
|
|
|
|
| 79 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 80 |
df['Model'] = df['model'].apply(make_link)
|
| 81 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 82 |
+
ascending = True # Always default to Low to High
|
| 83 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 84 |
return generate_html_table_from_df(df)
|
| 85 |
|
| 86 |
+
def update_all_tasks(sort_order):
|
| 87 |
+
return get_all_model_names_html(sort_order)
|
| 88 |
+
|
| 89 |
+
def get_all_model_names_html(sort_order="Low to High"):
|
| 90 |
all_df = pd.DataFrame()
|
| 91 |
for task in tasks:
|
| 92 |
df = pd.read_csv('data/energy/' + task)
|
|
|
|
| 98 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 99 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 100 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 101 |
+
ascending = True # Default to Low to High
|
| 102 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 103 |
return generate_html_table_from_df(all_df)
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
# --- Build the Gradio Interface ---
|
|
|
|
| 106 |
demo = gr.Blocks(css="""
|
| 107 |
.gr-dataframe table {
|
| 108 |
table-layout: fixed;
|
|
|
|
| 117 |
""")
|
| 118 |
|
| 119 |
with demo:
|
| 120 |
+
gr.HTML('<div style="text-align: center;"><img src="logo.png" alt="Logo" style="width: 200px;"></div>')
|
| 121 |
+
gr.Markdown('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score Leaderboard</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
with gr.TabItem("All Tasks 💡"):
|
| 125 |
sort_dropdown_all = gr.Dropdown(
|
| 126 |
choices=["Low to High", "High to Low"],
|
| 127 |
label="Sort",
|
| 128 |
+
value="Low to High"
|
| 129 |
)
|
| 130 |
+
all_table = gr.HTML(get_all_model_names_html("Low to High"))
|
| 131 |
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
|
| 132 |
|
| 133 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 140 |
)
|
| 141 |
gr.Markdown("""Last updated: February 2025""")
|
| 142 |
|
| 143 |
+
demo.launch()
|