|
|
from __future__ import annotations |
|
|
from typing import Dict, List, Tuple |
|
|
from smolagents import tool |
|
|
|
|
|
|
|
|
from level_classifier_tool_2 import classify_levels_phrases |
|
|
from phrases import BLOOMS_PHRASES, DOK_PHRASES |
|
|
|
|
|
|
|
|
_INDEX = None |
|
|
_BACKEND = None |
|
|
_BLOOM_INDEX = None |
|
|
_DOK_INDEX = None |
|
|
|
|
|
def set_retrieval_index(index) -> None: |
|
|
"""Call this from app.py after loading your LlamaIndex index.""" |
|
|
global _INDEX |
|
|
_INDEX = index |
|
|
|
|
|
def set_classifier_state(backend, bloom_index, dok_index) -> None: |
|
|
"""Call this from app.py after building the backend and prebuilt indices.""" |
|
|
global _BACKEND, _BLOOM_INDEX, _DOK_INDEX |
|
|
_BACKEND = backend |
|
|
_BLOOM_INDEX = bloom_index |
|
|
_DOK_INDEX = dok_index |
|
|
|
|
|
|
|
|
|
|
|
@tool |
|
|
def QuestionRetrieverTool(subject: str, topic: str, grade: str) -> dict: |
|
|
""" |
|
|
Retrieve up to 5 closely-related example Q&A pairs from the source datasets. |
|
|
|
|
|
Args: |
|
|
subject: The subject area (e.g., "Math", "Science"). |
|
|
topic: The specific topic within the subject (e.g., "Algebra", "Biology"). |
|
|
grade: The grade level (e.g., "Grade 5", "Grade 8"). |
|
|
|
|
|
Returns: |
|
|
{ |
|
|
"closest questions found for": {"subject": ..., "topic": ..., "grade": ...}, |
|
|
"questions": [{"text": "..."} * up to 5] |
|
|
} |
|
|
""" |
|
|
if _INDEX is None: |
|
|
return {"error": "Retriever not initialized. Call set_retrieval_index(index) before using this tool."} |
|
|
|
|
|
query = f"{topic} question for {grade} of the {subject}" |
|
|
try: |
|
|
results = _INDEX.as_retriever(similarity_top_k=5).retrieve(query) |
|
|
question_texts = [r.node.text for r in results] |
|
|
except Exception as e: |
|
|
return {"error": f"Retriever error: {e}"} |
|
|
|
|
|
return { |
|
|
"closest questions found for": {"subject": subject, "topic": topic, "grade": grade}, |
|
|
"questions": [{"text": q} for q in question_texts] |
|
|
} |
|
|
|
|
|
|
|
|
@tool |
|
|
def classify_and_score( |
|
|
question: str, |
|
|
target_bloom: str, |
|
|
target_dok: str, |
|
|
agg: str = "max" |
|
|
) -> dict: |
|
|
""" |
|
|
Classify a question against Bloom’s and DOK targets and return guidance. |
|
|
|
|
|
Args: |
|
|
question: Question text to evaluate. |
|
|
target_bloom: Target Bloom’s level (e.g., "Analyze" or "Apply+"). |
|
|
target_dok: Target DOK level (e.g., "DOK3" or "DOK2-DOK3"). |
|
|
agg: Aggregation over phrase sims ("mean", "max", "topk_mean"). |
|
|
|
|
|
Returns: |
|
|
{ |
|
|
"ok": bool, |
|
|
"measured": {"bloom_best": str, "bloom_scores": dict, "dok_best": str, "dok_scores": dict}, |
|
|
"feedback": str |
|
|
} |
|
|
""" |
|
|
if _BACKEND is None or _BLOOM_INDEX is None or _DOK_INDEX is None: |
|
|
return {"error": "Classifier not initialized. Call set_classifier_state(backend, bloom_index, dok_index) first."} |
|
|
|
|
|
try: |
|
|
res = classify_levels_phrases( |
|
|
question, |
|
|
BLOOMS_PHRASES, |
|
|
DOK_PHRASES, |
|
|
backend=_BACKEND, |
|
|
prebuilt_bloom_index=_BLOOM_INDEX, |
|
|
prebuilt_dok_index=_DOK_INDEX, |
|
|
agg=agg, |
|
|
return_phrase_matches=True |
|
|
) |
|
|
except Exception as e: |
|
|
return {"error": f"classify_levels_phrases failed: {e}"} |
|
|
|
|
|
def _parse_target_bloom(t: str): |
|
|
order = ["Remember","Understand","Apply","Analyze","Evaluate","Create"] |
|
|
if t.endswith("+"): |
|
|
base = t[:-1] |
|
|
return set(order[order.index(base):]) |
|
|
return {t} |
|
|
|
|
|
def _parse_target_dok(t: str): |
|
|
order = ["DOK1","DOK2","DOK3","DOK4"] |
|
|
if "-" in t: |
|
|
lo, hi = t.split("-") |
|
|
return set(order[order.index(lo):order.index(hi)+1]) |
|
|
return {t} |
|
|
|
|
|
bloom_target_set = _parse_target_bloom(target_bloom) |
|
|
dok_target_set = _parse_target_dok(target_dok) |
|
|
|
|
|
bloom_best = res["blooms"]["best_level"] |
|
|
dok_best = res["dok"]["best_level"] |
|
|
|
|
|
bloom_ok = bloom_best in bloom_target_set |
|
|
dok_ok = dok_best in dok_target_set |
|
|
|
|
|
feedback_parts = [] |
|
|
if not bloom_ok: |
|
|
feedback_parts.append( |
|
|
f"Shift Bloom’s from {bloom_best} toward {sorted(bloom_target_set)}. " |
|
|
f"Top cues: {res['blooms']['top_phrases'].get(bloom_best, [])[:3]}" |
|
|
) |
|
|
if not dok_ok: |
|
|
feedback_parts.append( |
|
|
f"Shift DOK from {dok_best} toward {sorted(dok_target_set)}. " |
|
|
f"Top cues: {res['dok']['top_phrases'].get(dok_best, [])[:3]}" |
|
|
) |
|
|
|
|
|
return { |
|
|
"ok": bool(bloom_ok and dok_ok), |
|
|
"measured": { |
|
|
"bloom_best": bloom_best, |
|
|
"bloom_scores": res["blooms"]["scores"], |
|
|
"dok_best": dok_best, |
|
|
"dok_scores": res["dok"]["scores"], |
|
|
}, |
|
|
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.", |
|
|
} |
|
|
|