bhardwaj08sarthak commited on
Commit
1ee013c
·
verified ·
1 Parent(s): f10e473

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -39
app.py CHANGED
@@ -25,40 +25,7 @@ from phrases import BLOOMS_PHRASES, DOK_PHRASES
25
  _backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
26
  _BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
27
  _DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
28
- D = {
29
- "GSM8k": GSM8k['question'],
30
- "Olympiad": Olympiad_math['question'],
31
- "Olympiad2": Olympiad_math2['question'],
32
- "DeepMind Math": clean_math['question'],
33
- "MMMLU": MMMLU['question'],
34
- "MMMU": MMMU['question'],
35
- "ScienceQA": ScienceQA['question'],
36
- "PubmedQA": PubmedQA['question']
37
- }
38
- all_questions = (
39
- list(D["GSM8k"]) +
40
- list(D["Olympiad"]) +
41
- list(D["MMMLU"]) +
42
- list(D["MMMU"]) +
43
- list(D["DeepMind Math"]) +
44
- list(D["Olympiad2"]) +
45
- list(D["ScienceQA"]) +
46
- list(D["PubmedQA"])
47
- )
48
 
49
- emb = HuggingFaceEmbeddings(
50
- model_name="google/embeddinggemma-300m",
51
- encode_kwargs={"normalize_embeddings": True},
52
- )
53
- texts = all_questions
54
- index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
55
-
56
- # ------------------------ Scoring TOOL -----------------------------------
57
-
58
- emb = HuggingFaceEmbeddings(
59
- model_name="google/embeddinggemma-300m",
60
- encode_kwargs={"normalize_embeddings": True},
61
- )
62
  D = {
63
  "GSM8k": GSM8k['question'],
64
  "Olympiad": Olympiad_math['question'],
@@ -79,12 +46,17 @@ all_questions = (
79
  list(D["ScienceQA"]) +
80
  list(D["PubmedQA"])
81
  )
82
- texts = all_questions
83
- index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
84
-
85
- # ------------------------ Retriever TOOL -----------------------------------
86
-
87
-
 
 
 
 
 
88
  # ------------------------ Agent setup with timeout ------------------------
89
  def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
90
  client = InferenceClient(
 
25
  _backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
26
  _BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
27
  _DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  D = {
30
  "GSM8k": GSM8k['question'],
31
  "Olympiad": Olympiad_math['question'],
 
46
  list(D["ScienceQA"]) +
47
  list(D["PubmedQA"])
48
  )
49
+ texts = all_questions.
50
+ @spaces(15)
51
+ def build_indexes_on_gpu(model="google/embeddinggemma-300m"):
52
+ device = 'cuda'
53
+ emb = HuggingFaceEmbeddings(
54
+ model_name="model",
55
+ model_kwargs={"device": device},
56
+ encode_kwargs={"normalize_embeddings": True},
57
+ index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
58
+ return index
59
+ index = build_indexes_on_gpu(model="google/embeddinggemma-300m")
60
  # ------------------------ Agent setup with timeout ------------------------
61
  def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
62
  client = InferenceClient(