bhardwaj08sarthak commited on
Commit
5e21aed
·
verified ·
1 Parent(s): 48b6006

Update all_tools.py

Browse files
Files changed (1) hide show
  1. all_tools.py +1 -29
all_tools.py CHANGED
@@ -1,42 +1,14 @@
1
  from llama_index.core import VectorStoreIndex, Document
2
  from smolagents import tool
3
  from langchain_community.embeddings import HuggingFaceEmbeddings
4
- from all_datasets import *
5
  from level_classifier_tool_2 import (
6
  classify_levels_phrases,
7
  HFEmbeddingBackend,
8
  build_phrase_index
9
  )
10
  from phrases import BLOOMS_PHRASES, DOK_PHRASES
11
- D = {
12
- "GSM8k": GSM8k['question'],
13
- "Olympiad": Olympiad_math['question'],
14
- "Olympiad2": Olympiad_math2['question'],
15
- "DeepMind Math": clean_math['question'],
16
- "MMMLU": MMMLU['question'],
17
- "MMMU": MMMU['question'],
18
- "ScienceQA": ScienceQA['question'],
19
- "PubmedQA": PubmedQA['question']
20
- }
21
 
22
- all_questions = (
23
- list(D["GSM8k"]) +
24
- list(D["Olympiad"]) +
25
- list(D["MMMLU"]) +
26
- list(D["MMMU"]) +
27
- list(D["DeepMind Math"]) +
28
- list(D["Olympiad2"]) +
29
- list(D["ScienceQA"]) +
30
- list(D["PubmedQA"])
31
- )
32
-
33
- emb = HuggingFaceEmbeddings(
34
- model_name="google/embeddinggemma-300m",
35
- encode_kwargs={"normalize_embeddings": True},
36
- )
37
-
38
- texts = all_questions
39
- index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
40
  #Retriever tool
41
  @tool
42
  def QuestionRetrieverTool(subject: str, topic: str, grade: str) -> dict:
 
1
  from llama_index.core import VectorStoreIndex, Document
2
  from smolagents import tool
3
  from langchain_community.embeddings import HuggingFaceEmbeddings
4
+ #from all_datasets import *
5
  from level_classifier_tool_2 import (
6
  classify_levels_phrases,
7
  HFEmbeddingBackend,
8
  build_phrase_index
9
  )
10
  from phrases import BLOOMS_PHRASES, DOK_PHRASES
 
 
 
 
 
 
 
 
 
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  #Retriever tool
13
  @tool
14
  def QuestionRetrieverTool(subject: str, topic: str, grade: str) -> dict: