Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
from smolagents import CodeAgent, InferenceClientModel, tool
|
| 6 |
+
|
| 7 |
+
from level_classifier_tool import (
|
| 8 |
+
classify_levels_phrases,
|
| 9 |
+
HFEmbeddingBackend,
|
| 10 |
+
build_phrase_index
|
| 11 |
+
)
|
| 12 |
+
BLOOMS_PHRASES = {
|
| 13 |
+
"Remember": [
|
| 14 |
+
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find", "select", "match", "choose", "give", "write", "tell", "show"
|
| 15 |
+
],
|
| 16 |
+
"Understand": [
|
| 17 |
+
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss", "predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
|
| 18 |
+
],
|
| 19 |
+
"Apply": [
|
| 20 |
+
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform", "execute", "carry out", "practice", "employ", "sketch"
|
| 21 |
+
],
|
| 22 |
+
"Analyze": [
|
| 23 |
+
"analyze", "differentiate", "organize", "structure", "break down", "distinguish", "dissect", "examine", "compare", "contrast", "attribute", "investigate"
|
| 24 |
+
],
|
| 25 |
+
"Evaluate": [
|
| 26 |
+
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support", "appraise", "recommend", "conclude", "review"
|
| 27 |
+
],
|
| 28 |
+
"Create": [
|
| 29 |
+
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate", "develop", "formulate", "invent", "build"
|
| 30 |
+
]
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
DOK_PHRASES = {
|
| 34 |
+
"DOK1": [
|
| 35 |
+
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
|
| 36 |
+
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
|
| 37 |
+
"write", "tell", "show", "point out"
|
| 38 |
+
],
|
| 39 |
+
"DOK2": [
|
| 40 |
+
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
|
| 41 |
+
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
|
| 42 |
+
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
|
| 43 |
+
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
|
| 44 |
+
],
|
| 45 |
+
"DOK3": [
|
| 46 |
+
"justify", "analyze", "generalise", "compare", "construct", "investigate",
|
| 47 |
+
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
|
| 48 |
+
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
|
| 49 |
+
"probe", "explore", "develop", "formulate"
|
| 50 |
+
],
|
| 51 |
+
"DOK4": [
|
| 52 |
+
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
|
| 53 |
+
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
|
| 54 |
+
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
|
| 55 |
+
"predict outcome", "simulate"
|
| 56 |
+
]
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
# Prebuild embeddings once
|
| 60 |
+
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 61 |
+
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
|
| 62 |
+
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
|
| 63 |
+
|
| 64 |
+
@tool
|
| 65 |
+
def classify_and_score(
|
| 66 |
+
question: str,
|
| 67 |
+
target_bloom: str,
|
| 68 |
+
target_dok: str,
|
| 69 |
+
agg: str = "max"
|
| 70 |
+
) -> dict:
|
| 71 |
+
"""Classify a question against Bloom’s and DOK targets and return guidance.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
question: The question text to evaluate for cognitive demand.
|
| 75 |
+
target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
|
| 76 |
+
or plus form (e.g., "Apply+") meaning that level or higher.
|
| 77 |
+
target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
|
| 78 |
+
or span (e.g., "DOK2-DOK3").
|
| 79 |
+
agg: Aggregation method over phrase similarities within a level
|
| 80 |
+
(choices: "mean", "max", "topk_mean").
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
A dictionary with:
|
| 84 |
+
ok: True if both Bloom’s and DOK match the targets.
|
| 85 |
+
measured: Dict with best levels and per-level scores for Bloom’s and DOK.
|
| 86 |
+
feedback: Brief guidance describing how to adjust the question to hit targets.
|
| 87 |
+
"""
|
| 88 |
+
res = classify_levels_phrases(
|
| 89 |
+
question,
|
| 90 |
+
BLOOMS_PHRASES,
|
| 91 |
+
DOK_PHRASES,
|
| 92 |
+
backend=_backend,
|
| 93 |
+
prebuilt_bloom_index=_BLOOM_INDEX,
|
| 94 |
+
prebuilt_dok_index=_DOK_INDEX,
|
| 95 |
+
agg=agg,
|
| 96 |
+
return_phrase_matches=True
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def _parse_target_bloom(t: str):
|
| 100 |
+
order = ["Remember","Understand","Apply","Analyze","Evaluate","Create"]
|
| 101 |
+
if t.endswith("+"):
|
| 102 |
+
base = t[:-1]
|
| 103 |
+
return set(order[order.index(base):])
|
| 104 |
+
return {t}
|
| 105 |
+
|
| 106 |
+
def _parse_target_dok(t: str):
|
| 107 |
+
order = ["DOK1","DOK2","DOK3","DOK4"]
|
| 108 |
+
if "-" in t:
|
| 109 |
+
lo, hi = t.split("-")
|
| 110 |
+
return set(order[order.index(lo):order.index(hi)+1])
|
| 111 |
+
return {t}
|
| 112 |
+
|
| 113 |
+
bloom_target_set = _parse_target_bloom(target_bloom)
|
| 114 |
+
dok_target_set = _parse_target_dok(target_dok)
|
| 115 |
+
|
| 116 |
+
bloom_best = res["blooms"]["best_level"]
|
| 117 |
+
dok_best = res["dok"]["best_level"]
|
| 118 |
+
|
| 119 |
+
bloom_ok = bloom_best in bloom_target_set
|
| 120 |
+
dok_ok = dok_best in dok_target_set
|
| 121 |
+
|
| 122 |
+
feedback_parts = []
|
| 123 |
+
if not bloom_ok:
|
| 124 |
+
feedback_parts.append(
|
| 125 |
+
f"Shift Bloom’s from {bloom_best} toward {sorted(bloom_target_set)}. "
|
| 126 |
+
f"Top cues: {res['blooms']['top_phrases'].get(bloom_best, [])[:3]}"
|
| 127 |
+
)
|
| 128 |
+
if not dok_ok:
|
| 129 |
+
feedback_parts.append(
|
| 130 |
+
f"Shift DOK from {dok_best} toward {sorted(dok_target_set)}. "
|
| 131 |
+
f"Top cues: {res['dok']['top_phrases'].get(dok_best, [])[:3]}"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
return {
|
| 135 |
+
"ok": bool(bloom_ok and dok_ok),
|
| 136 |
+
"measured": {
|
| 137 |
+
"bloom_best": bloom_best,
|
| 138 |
+
"bloom_scores": res["blooms"]["scores"],
|
| 139 |
+
"dok_best": dok_best,
|
| 140 |
+
"dok_scores": res["dok"]["scores"],
|
| 141 |
+
},
|
| 142 |
+
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# ------------------------ Agent setup with timeout ------------------------
|
| 147 |
+
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
|
| 148 |
+
client = InferenceClient(
|
| 149 |
+
model=model_id,
|
| 150 |
+
provider=provider,
|
| 151 |
+
timeout=timeout,
|
| 152 |
+
token=hf_token if hf_token else None,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
model = InferenceClientModel(client=client)
|
| 156 |
+
agent = CodeAgent(model=model, tools=[classify_and_score])
|
| 157 |
+
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens} # attach for reference
|
| 158 |
+
return agent
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# ------------------------ Agent task template -----------------------------
|
| 162 |
+
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".
|
| 163 |
+
|
| 164 |
+
After you propose a candidate, you MUST immediately call:
|
| 165 |
+
classify_and_score(
|
| 166 |
+
question=<just the question text>,
|
| 167 |
+
target_bloom="{target_bloom}",
|
| 168 |
+
target_dok="{target_dok}",
|
| 169 |
+
agg="max"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
Use the returned dict:
|
| 173 |
+
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
|
| 174 |
+
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
|
| 175 |
+
Repeat up to {attempts} attempts.
|
| 176 |
+
Keep answers concise.
|
| 177 |
+
Additionally, when you call classify_and_score, pass the exact question text you propose.
|
| 178 |
+
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
|
| 179 |
+
'''
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# ------------------------ Gradio glue ------------------------------------
|
| 183 |
+
def run_pipeline(
|
| 184 |
+
hf_token,
|
| 185 |
+
topic,
|
| 186 |
+
grade,
|
| 187 |
+
subject,
|
| 188 |
+
target_bloom,
|
| 189 |
+
target_dok,
|
| 190 |
+
attempts,
|
| 191 |
+
model_id,
|
| 192 |
+
provider,
|
| 193 |
+
timeout,
|
| 194 |
+
temperature,
|
| 195 |
+
max_tokens
|
| 196 |
+
):
|
| 197 |
+
# Build agent per run (or cache if you prefer)
|
| 198 |
+
agent = make_agent(
|
| 199 |
+
hf_token=hf_token.strip(),
|
| 200 |
+
model_id=model_id,
|
| 201 |
+
provider=provider,
|
| 202 |
+
timeout=int(timeout),
|
| 203 |
+
temperature=float(temperature),
|
| 204 |
+
max_tokens=int(max_tokens),
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
task = TASK_TMPL.format(
|
| 208 |
+
grade=grade,
|
| 209 |
+
topic=topic,
|
| 210 |
+
subject=subject,
|
| 211 |
+
target_bloom=target_bloom,
|
| 212 |
+
target_dok=target_dok,
|
| 213 |
+
attempts=int(attempts)
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# The agent will internally call the tool
|
| 217 |
+
try:
|
| 218 |
+
result_text = agent.run(task, max_steps=int(attempts)*4)
|
| 219 |
+
except Exception as e:
|
| 220 |
+
result_text = f"ERROR: {e}"
|
| 221 |
+
|
| 222 |
+
# Try to extract final JSON
|
| 223 |
+
final_json = ""
|
| 224 |
+
try:
|
| 225 |
+
# find JSON object in result_text (simple heuristic)
|
| 226 |
+
start = result_text.find("{")
|
| 227 |
+
end = result_text.rfind("}")
|
| 228 |
+
if start != -1 and end != -1 and end > start:
|
| 229 |
+
candidate = result_text[start:end+1]
|
| 230 |
+
final_json = json.dumps(json.loads(candidate), indent=2)
|
| 231 |
+
except Exception:
|
| 232 |
+
final_json = ""
|
| 233 |
+
|
| 234 |
+
return final_json, result_text
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
with gr.Blocks() as demo:
|
| 238 |
+
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
|
| 239 |
+
gr.Markdown(
|
| 240 |
+
"This app uses a **CodeAgent** that *calls the scoring tool* "
|
| 241 |
+
"(`classify_and_score`) after each proposal, and revises until it hits the target."
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
with gr.Accordion("API Settings", open=False):
|
| 245 |
+
hf_token = gr.Textbox(label="Hugging Face Token (required if the endpoint needs auth)", type="password")
|
| 246 |
+
model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
|
| 247 |
+
provider = gr.Textbox(value="novita", label="Provider")
|
| 248 |
+
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")
|
| 249 |
+
|
| 250 |
+
with gr.Row():
|
| 251 |
+
topic = gr.Textbox(value="Fractions", label="Topic")
|
| 252 |
+
grade = gr.Dropdown(
|
| 253 |
+
choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
|
| 254 |
+
"Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
|
| 255 |
+
value="Grade 7",
|
| 256 |
+
label="Grade"
|
| 257 |
+
)
|
| 258 |
+
subject= gr.Textbox(value="Math", label="Subject")
|
| 259 |
+
|
| 260 |
+
with gr.Row():
|
| 261 |
+
target_bloom = gr.Dropdown(
|
| 262 |
+
choices=["Remember","Understand","Apply","Analyze","Evaluate","Create"],
|
| 263 |
+
value="Analyze",
|
| 264 |
+
label="Target Bloom’s"
|
| 265 |
+
)
|
| 266 |
+
target_dok = gr.Dropdown(
|
| 267 |
+
choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
|
| 268 |
+
value="DOK2-DOK3",
|
| 269 |
+
label="Target Depth of Knowledge"
|
| 270 |
+
)
|
| 271 |
+
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
|
| 272 |
+
|
| 273 |
+
with gr.Accordion("⚙️ Generation Controls", open=False):
|
| 274 |
+
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 275 |
+
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
|
| 276 |
+
|
| 277 |
+
run_btn = gr.Button("Run Agent 🚀")
|
| 278 |
+
|
| 279 |
+
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
|
| 280 |
+
transcript = gr.Textbox(label="Agent Transcript", lines=18)
|
| 281 |
+
|
| 282 |
+
run_btn.click(
|
| 283 |
+
fn=run_pipeline,
|
| 284 |
+
inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens],
|
| 285 |
+
outputs=[final_json, transcript]
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
demo.launch()
|
| 290 |
+
|