Update app.py
Browse files
app.py
CHANGED
|
@@ -1,282 +1,109 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
-
import spaces
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
from smolagents import CodeAgent, InferenceClientModel, tool
|
|
|
|
|
|
|
| 7 |
from huggingface_hub import login
|
| 8 |
-
from smolagents import
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
login(token=token)
|
| 12 |
-
from level_classifier_tool import (
|
| 13 |
classify_levels_phrases,
|
| 14 |
HFEmbeddingBackend,
|
| 15 |
build_phrase_index
|
| 16 |
)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
BLOOMS_PHRASES
|
| 20 |
-
|
| 21 |
-
"define", "list", "recall", "identify", "state", "label", "name", "recognize", "find",
|
| 22 |
-
"select", "match", "choose", "give", "write", "tell", "show"
|
| 23 |
-
],
|
| 24 |
-
"Understand": [
|
| 25 |
-
"classify", "interpret", "summarize", "explain", "estimate", "describe", "discuss",
|
| 26 |
-
"predict", "paraphrase", "restate", "illustrate", "compare", "contrast", "report"
|
| 27 |
-
],
|
| 28 |
-
"Apply": [
|
| 29 |
-
"apply", "solve", "use", "demonstrate", "calculate", "implement", "perform",
|
| 30 |
-
"execute", "carry out", "practice", "employ", "sketch"
|
| 31 |
-
],
|
| 32 |
-
"Analyze": [
|
| 33 |
-
"analyze", "differentiate", "organize", "structure", "break down", "distinguish",
|
| 34 |
-
"dissect", "examine", "compare", "contrast", "attribute", "investigate"
|
| 35 |
-
],
|
| 36 |
-
"Evaluate": [
|
| 37 |
-
"evaluate", "judge", "critique", "assess", "defend", "argue", "select", "support",
|
| 38 |
-
"appraise", "recommend", "conclude", "review"
|
| 39 |
-
],
|
| 40 |
-
"Create": [
|
| 41 |
-
"create", "design", "compose", "plan", "construct", "produce", "devise", "generate",
|
| 42 |
-
"develop", "formulate", "invent", "build"
|
| 43 |
-
]
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
DOK_PHRASES = {
|
| 47 |
-
"DOK1": [
|
| 48 |
-
"define", "list", "recall", "compute", "identify", "state", "label", "how many",
|
| 49 |
-
"name", "recognize", "find", "determine", "select", "match", "choose", "give",
|
| 50 |
-
"write", "tell", "show", "point out"
|
| 51 |
-
],
|
| 52 |
-
"DOK2": [
|
| 53 |
-
"classify", "interpret", "estimate", "organise", "summarise", "explain", "solve",
|
| 54 |
-
"categorize", "group", "compare", "contrast", "distinguish", "make observations",
|
| 55 |
-
"collect data", "display data", "arrange", "sort", "paraphrase", "restate", "predict",
|
| 56 |
-
"approximate", "demonstrate", "illustrate", "describe", "analyze data"
|
| 57 |
-
],
|
| 58 |
-
"DOK3": [
|
| 59 |
-
"justify", "analyze", "generalise", "compare", "construct", "investigate",
|
| 60 |
-
"support", "defend", "argue", "examine", "differentiate", "criticize", "debate",
|
| 61 |
-
"test", "experiment", "hypothesize", "draw conclusions", "break down", "dissect",
|
| 62 |
-
"probe", "explore", "develop", "formulate"
|
| 63 |
-
],
|
| 64 |
-
"DOK4": [
|
| 65 |
-
"design", "synthesize", "model", "prove", "evaluate system", "critique", "create",
|
| 66 |
-
"compose", "plan", "invent", "devise", "generate", "build", "construct", "produce",
|
| 67 |
-
"formulate", "improve", "revise", "assess", "appraise", "judge", "recommend",
|
| 68 |
-
"predict outcome", "simulate"
|
| 69 |
-
]
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
# ------------------------ Prebuild embeddings once ------------------------
|
| 73 |
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 74 |
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
|
| 75 |
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
agg: str = "max"
|
| 84 |
-
) -> dict:
|
| 85 |
-
"""Classify a question against Bloom’s and DOK targets and return guidance.
|
| 86 |
-
|
| 87 |
-
Args:
|
| 88 |
-
question: The question text to evaluate for cognitive demand.
|
| 89 |
-
target_bloom: Target Bloom’s level or range. Accepts exact (e.g., "Analyze")
|
| 90 |
-
or plus form (e.g., "Apply+") meaning that level or higher.
|
| 91 |
-
target_dok: Target DOK level or range. Accepts exact (e.g., "DOK3")
|
| 92 |
-
or span (e.g., "DOK2-DOK3").
|
| 93 |
-
agg: Aggregation method over phrase similarities within a level
|
| 94 |
-
(choices: "mean", "max", "topk_mean").
|
| 95 |
-
|
| 96 |
-
Returns:
|
| 97 |
-
A dictionary with:
|
| 98 |
-
ok: True if both Bloom’s and DOK match the targets.
|
| 99 |
-
measured: Dict with best levels and per-level scores for Bloom’s and DOK.
|
| 100 |
-
feedback: Brief guidance describing how to adjust the question to hit targets.
|
| 101 |
-
"""
|
| 102 |
-
res = classify_levels_phrases(
|
| 103 |
-
question,
|
| 104 |
-
BLOOMS_PHRASES,
|
| 105 |
-
DOK_PHRASES,
|
| 106 |
-
backend=_backend,
|
| 107 |
-
prebuilt_bloom_index=_BLOOM_INDEX,
|
| 108 |
-
prebuilt_dok_index=_DOK_INDEX,
|
| 109 |
-
agg=agg,
|
| 110 |
-
return_phrase_matches=True
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
def _parse_target_bloom(t: str):
|
| 114 |
-
order = ["Remember", "Understand", "Apply", "Analyze", "Evaluate", "Create"]
|
| 115 |
-
if t.endswith("+"):
|
| 116 |
-
base = t[:-1]
|
| 117 |
-
if base not in order:
|
| 118 |
-
raise ValueError(f"Invalid Bloom target '{t}'")
|
| 119 |
-
return set(order[order.index(base):])
|
| 120 |
-
if t not in order:
|
| 121 |
-
raise ValueError(f"Invalid Bloom target '{t}'")
|
| 122 |
-
return {t}
|
| 123 |
-
|
| 124 |
-
def _parse_target_dok(t: str):
|
| 125 |
-
order = ["DOK1", "DOK2", "DOK3", "DOK4"]
|
| 126 |
-
if "-" in t:
|
| 127 |
-
lo, hi = t.split("-")
|
| 128 |
-
if lo not in order or hi not in order or order.index(lo) > order.index(hi):
|
| 129 |
-
raise ValueError(f"Invalid DOK range '{t}'")
|
| 130 |
-
return set(order[order.index(lo):order.index(hi) + 1])
|
| 131 |
-
if t not in order:
|
| 132 |
-
raise ValueError(f"Invalid DOK target '{t}'")
|
| 133 |
-
return {t}
|
| 134 |
-
|
| 135 |
-
try:
|
| 136 |
-
bloom_target_set = _parse_target_bloom(target_bloom)
|
| 137 |
-
dok_target_set = _parse_target_dok(target_dok)
|
| 138 |
-
except Exception as e:
|
| 139 |
-
return {
|
| 140 |
-
"ok": False,
|
| 141 |
-
"measured": {},
|
| 142 |
-
"feedback": (
|
| 143 |
-
f"Invalid targets: {e}. Use Bloom in "
|
| 144 |
-
"{Remember, Understand, Apply, Analyze, Evaluate, Create} "
|
| 145 |
-
"and DOK in {DOK1..DOK4} or ranges like 'DOK2-DOK3'."
|
| 146 |
-
),
|
| 147 |
-
}
|
| 148 |
-
|
| 149 |
-
bloom_best = res["blooms"]["best_level"]
|
| 150 |
-
dok_best = res["dok"]["best_level"]
|
| 151 |
-
|
| 152 |
-
bloom_ok = bloom_best in bloom_target_set
|
| 153 |
-
dok_ok = dok_best in dok_target_set
|
| 154 |
-
|
| 155 |
-
top_bloom_phrases = res["blooms"].get("top_phrases", {})
|
| 156 |
-
top_dok_phrases = res["dok"].get("top_phrases", {})
|
| 157 |
-
|
| 158 |
-
feedback_parts = []
|
| 159 |
-
if not bloom_ok:
|
| 160 |
-
feedback_parts.append(
|
| 161 |
-
f"Shift Bloom’s from {bloom_best} toward {sorted(list(bloom_target_set))}. "
|
| 162 |
-
f"Top cues: {top_bloom_phrases.get(bloom_best, [])[:3]}"
|
| 163 |
-
)
|
| 164 |
-
if not dok_ok:
|
| 165 |
-
feedback_parts.append(
|
| 166 |
-
f"Shift DOK from {dok_best} toward {sorted(list(dok_target_set))}. "
|
| 167 |
-
f"Top cues: {top_dok_phrases.get(dok_best, [])[:3]}"
|
| 168 |
-
)
|
| 169 |
|
| 170 |
-
|
| 171 |
-
"ok": bool(bloom_ok and dok_ok),
|
| 172 |
-
"measured": {
|
| 173 |
-
"bloom_best": bloom_best,
|
| 174 |
-
"bloom_scores": res["blooms"]["scores"],
|
| 175 |
-
"dok_best": dok_best,
|
| 176 |
-
"dok_scores": res["dok"]["scores"],
|
| 177 |
-
},
|
| 178 |
-
"feedback": " ".join(feedback_parts) if feedback_parts else "On target.",
|
| 179 |
-
}
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
|
| 185 |
-
def get_local_model_gpu(model_id: str):
|
| 186 |
-
"""
|
| 187 |
-
Load and cache a local Transformers model for smolagents on GPU.
|
| 188 |
-
Decorated so Spaces knows this task needs a GPU.
|
| 189 |
-
"""
|
| 190 |
-
# Import here to keep Hosted mode lightweight.
|
| 191 |
-
try:
|
| 192 |
-
from smolagents import TransformersModel # provided by smolagents
|
| 193 |
-
except Exception as e:
|
| 194 |
-
raise RuntimeError(
|
| 195 |
-
"Local backend requires 'TransformersModel' from smolagents. "
|
| 196 |
-
"Please ensure your smolagents version provides it."
|
| 197 |
-
) from e
|
| 198 |
|
| 199 |
-
if (
|
| 200 |
-
_LOCAL_MODEL_CACHE["model"] is not None
|
| 201 |
-
and _LOCAL_MODEL_CACHE["model_id"] == model_id
|
| 202 |
-
):
|
| 203 |
-
return _LOCAL_MODEL_CACHE["model"]
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
)
|
| 209 |
-
_LOCAL_MODEL_CACHE["model"] = local_model
|
| 210 |
-
_LOCAL_MODEL_CACHE["model_id"] = model_id
|
| 211 |
-
return local_model
|
| 212 |
-
|
| 213 |
-
def make_agent(
|
| 214 |
-
backend_choice: str, # "Hosted API" | "Local GPU"
|
| 215 |
-
hf_token: str,
|
| 216 |
-
model_id: str,
|
| 217 |
-
timeout: int,
|
| 218 |
-
temperature: float,
|
| 219 |
-
max_tokens: int
|
| 220 |
-
):
|
| 221 |
-
if backend_choice == "Local GPU":
|
| 222 |
-
# This call is GPU-annotated; Spaces will allocate a GPU for it.
|
| 223 |
-
model = get_local_model_gpu(model_id)
|
| 224 |
-
else:
|
| 225 |
-
client = InferenceClient(
|
| 226 |
-
model=model_id,
|
| 227 |
-
timeout=timeout,
|
| 228 |
-
token=(hf_token or None),
|
| 229 |
-
)
|
| 230 |
-
model = InferenceClientModel(client=client)
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
| 234 |
return agent
|
| 235 |
|
| 236 |
-
# ------------------------ Agent task template -----------------------------
|
| 237 |
-
TASK_TMPL = '''You generate {subject} question candidates for {grade} on "{topic}".
|
| 238 |
-
|
| 239 |
-
After you propose a candidate, you MUST immediately call:
|
| 240 |
-
classify_and_score(
|
| 241 |
-
question=<just the question text>,
|
| 242 |
-
target_bloom="{target_bloom}",
|
| 243 |
-
target_dok="{target_dok}",
|
| 244 |
-
agg="max"
|
| 245 |
-
)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
- If ok == True: print ONLY compact JSON {{"question": "...", "answer": "...", "reasoning": "..."}} and finish.
|
| 249 |
-
- If ok == False: briefly explain the needed shift, revise the question, and call classify_and_score again.
|
| 250 |
-
Repeat up to {attempts} attempts.
|
| 251 |
-
Keep answers concise.
|
| 252 |
-
Additionally, when you call classify_and_score, pass the exact question text you propose.
|
| 253 |
-
If you output JSON, ensure it is valid JSON (no trailing commas, use double quotes).
|
| 254 |
-
'''
|
| 255 |
-
|
| 256 |
-
# ------------------------ Utility: robust JSON extractor ------------------
|
| 257 |
-
def extract_top_level_json(s: str) -> str:
|
| 258 |
-
start = s.find("{")
|
| 259 |
-
if start == -1:
|
| 260 |
-
return ""
|
| 261 |
-
depth = 0
|
| 262 |
-
for i in range(start, len(s)):
|
| 263 |
-
ch = s[i]
|
| 264 |
-
if ch == "{":
|
| 265 |
-
depth += 1
|
| 266 |
-
elif ch == "}":
|
| 267 |
-
depth -= 1
|
| 268 |
-
if depth == 0:
|
| 269 |
-
candidate = s[start:i + 1]
|
| 270 |
-
try:
|
| 271 |
-
json.loads(candidate) # validate
|
| 272 |
-
return candidate
|
| 273 |
-
except Exception:
|
| 274 |
-
return ""
|
| 275 |
-
return ""
|
| 276 |
|
| 277 |
-
# ------------------------
|
| 278 |
def run_pipeline(
|
| 279 |
-
backend_choice,
|
| 280 |
hf_token,
|
| 281 |
topic,
|
| 282 |
grade,
|
|
@@ -285,24 +112,23 @@ def run_pipeline(
|
|
| 285 |
target_dok,
|
| 286 |
attempts,
|
| 287 |
model_id,
|
|
|
|
| 288 |
timeout,
|
| 289 |
temperature,
|
| 290 |
-
max_tokens
|
|
|
|
| 291 |
):
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
except Exception as e:
|
| 302 |
-
err = f"ERROR initializing backend '{backend_choice}': {e}"
|
| 303 |
-
return "", err
|
| 304 |
|
| 305 |
-
task =
|
| 306 |
grade=grade,
|
| 307 |
topic=topic,
|
| 308 |
subject=subject,
|
|
@@ -311,117 +137,80 @@ def run_pipeline(
|
|
| 311 |
attempts=int(attempts)
|
| 312 |
)
|
| 313 |
|
|
|
|
| 314 |
try:
|
| 315 |
-
result_text = agent.run(task, max_steps=int(attempts)
|
| 316 |
except Exception as e:
|
| 317 |
-
result_text = f"ERROR
|
| 318 |
|
|
|
|
| 319 |
final_json = ""
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
| 323 |
final_json = json.dumps(json.loads(candidate), indent=2)
|
| 324 |
-
|
| 325 |
-
|
| 326 |
|
| 327 |
return final_json, result_text
|
| 328 |
|
| 329 |
-
|
| 330 |
with gr.Blocks() as demo:
|
| 331 |
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
|
| 332 |
gr.Markdown(
|
| 333 |
-
"
|
| 334 |
-
"and revises until it hits
|
| 335 |
)
|
| 336 |
|
| 337 |
-
with gr.Accordion("API
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
)
|
| 343 |
-
with gr.Row():
|
| 344 |
-
hf_token = gr.Textbox(
|
| 345 |
-
label="Hugging Face Token (required for private/hosted endpoints)",
|
| 346 |
-
type="password",
|
| 347 |
-
visible=True
|
| 348 |
-
)
|
| 349 |
-
model_id = gr.Textbox(
|
| 350 |
-
value="swiss-ai/Apertus-70B-Instruct-2509",
|
| 351 |
-
label="Model ID (repo id for Hosted, or local repo for GPU)"
|
| 352 |
-
)
|
| 353 |
-
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s, Hosted API only)")
|
| 354 |
|
| 355 |
with gr.Row():
|
| 356 |
topic = gr.Textbox(value="Fractions", label="Topic")
|
| 357 |
grade = gr.Dropdown(
|
| 358 |
-
choices=[
|
| 359 |
-
|
| 360 |
-
"Grade 7", "Grade 8", "Grade 9",
|
| 361 |
-
"Grade 10", "Grade 11", "Grade 12",
|
| 362 |
-
"Under Graduate", "Post Graduate"
|
| 363 |
-
],
|
| 364 |
value="Grade 7",
|
| 365 |
label="Grade"
|
| 366 |
)
|
| 367 |
-
subject
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
with gr.Row():
|
| 370 |
target_bloom = gr.Dropdown(
|
| 371 |
-
choices=["Remember",
|
| 372 |
value="Analyze",
|
| 373 |
label="Target Bloom’s"
|
| 374 |
)
|
| 375 |
target_dok = gr.Dropdown(
|
| 376 |
-
choices=["DOK1",
|
| 377 |
value="DOK2-DOK3",
|
| 378 |
-
label="Target
|
| 379 |
)
|
| 380 |
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
|
| 381 |
|
| 382 |
-
with gr.Accordion("
|
| 383 |
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 384 |
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
|
| 385 |
|
| 386 |
-
|
| 387 |
-
"*Hosted API:* uses Hugging Face Inference endpoints. Provide a token if needed.\n\n"
|
| 388 |
-
"*Local GPU:* loads the model into the Space with `TransformersModel (device_map='auto')`. "
|
| 389 |
-
"Ensure your Space has a GPU and enough VRAM for the selected model."
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
run_btn = gr.Button("Run Agent 🚀")
|
| 393 |
|
| 394 |
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
|
| 395 |
transcript = gr.Textbox(label="Agent Transcript", lines=18)
|
| 396 |
|
| 397 |
-
def _toggle_backend_fields(choice):
|
| 398 |
-
return (
|
| 399 |
-
gr.update(visible=(choice == "Hosted API")), # hf_token
|
| 400 |
-
gr.update(visible=True), # model_id always visible
|
| 401 |
-
gr.update(visible=(choice == "Hosted API")) # timeout slider
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
backend_choice.change(
|
| 405 |
-
_toggle_backend_fields,
|
| 406 |
-
inputs=[backend_choice],
|
| 407 |
-
outputs=[hf_token, model_id, timeout]
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
run_btn.click(
|
| 411 |
fn=run_pipeline,
|
| 412 |
-
inputs=[
|
| 413 |
-
backend_choice, hf_token, topic, grade, subject,
|
| 414 |
-
target_bloom, target_dok, attempts, model_id,
|
| 415 |
-
timeout, temperature, max_tokens
|
| 416 |
-
],
|
| 417 |
outputs=[final_json, transcript]
|
| 418 |
)
|
| 419 |
|
| 420 |
-
if __name__ == "__main__"
|
| 421 |
-
|
| 422 |
-
get_local_model_gpu(model_id) # triggers GPU allocation during startup
|
| 423 |
-
except Exception as e:
|
| 424 |
-
# don't crash the app if warmup fails; logs will show details
|
| 425 |
-
print("Warmup failed:", e)
|
| 426 |
-
|
| 427 |
-
demo.launch()
|
|
|
|
| 1 |
+
# Create a self-contained Gradio app that uses the agent-driven loop (Option A)
|
| 2 |
+
# It expects `level_classifier_tool.py` to be colocated (or installed on PYTHONPATH).
|
| 3 |
+
import sys
|
| 4 |
+
sys.path.append(r"C:\Users\Sarthak\OneDrive - UT Cloud\thesis\HF_Agent\src") # use raw string because of spaces
|
| 5 |
import json
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
from huggingface_hub import InferenceClient
|
| 8 |
from smolagents import CodeAgent, InferenceClientModel, tool
|
| 9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
from llama_index.core import VectorStoreIndex, Document
|
| 11 |
from huggingface_hub import login
|
| 12 |
+
from smolagents import tool
|
| 13 |
+
from all_datasets import *
|
| 14 |
+
from level_classifier_tool_2 import (
|
|
|
|
|
|
|
| 15 |
classify_levels_phrases,
|
| 16 |
HFEmbeddingBackend,
|
| 17 |
build_phrase_index
|
| 18 |
)
|
| 19 |
+
from task_temp import TASK_TMPL, CLASSIFY_TMPL, GEN_TMPL, RAG_TMPL
|
| 20 |
+
from all_tools import classify_and_score, QuestionRetrieverTool
|
| 21 |
+
from phrases import BLOOMS_PHRASES, DOK_PHRASES
|
| 22 |
+
# Prebuild embeddings once
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
_backend = HFEmbeddingBackend(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 24 |
_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
|
| 25 |
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)
|
| 26 |
+
D = {
|
| 27 |
+
"GSM8k": GSM8k['question'],
|
| 28 |
+
"Olympiad": Olympiad_math['question'],
|
| 29 |
+
"Olympiad2": Olympiad_math2['question'],
|
| 30 |
+
"DeepMind Math": clean_math['question'],
|
| 31 |
+
"MMMLU": MMMLU['question'],
|
| 32 |
+
"MMMU": MMMU['question'],
|
| 33 |
+
"ScienceQA": ScienceQA['question'],
|
| 34 |
+
"PubmedQA": PubmedQA['question']
|
| 35 |
+
}
|
| 36 |
+
all_questions = (
|
| 37 |
+
list(D["GSM8k"]) +
|
| 38 |
+
list(D["Olympiad"]) +
|
| 39 |
+
list(D["MMMLU"]) +
|
| 40 |
+
list(D["MMMU"]) +
|
| 41 |
+
list(D["DeepMind Math"]) +
|
| 42 |
+
list(D["Olympiad2"]) +
|
| 43 |
+
list(D["ScienceQA"]) +
|
| 44 |
+
list(D["PubmedQA"])
|
| 45 |
+
)
|
| 46 |
|
| 47 |
+
emb = HuggingFaceEmbeddings(
|
| 48 |
+
model_name="google/embeddinggemma-300m",
|
| 49 |
+
encode_kwargs={"normalize_embeddings": True},
|
| 50 |
+
)
|
| 51 |
+
texts = all_questions
|
| 52 |
+
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# ------------------------ Scoring TOOL -----------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
emb = HuggingFaceEmbeddings(
|
| 57 |
+
model_name="google/embeddinggemma-300m",
|
| 58 |
+
encode_kwargs={"normalize_embeddings": True},
|
| 59 |
+
)
|
| 60 |
+
D = {
|
| 61 |
+
"GSM8k": GSM8k['question'],
|
| 62 |
+
"Olympiad": Olympiad_math['question'],
|
| 63 |
+
"Olympiad2": Olympiad_math2['question'],
|
| 64 |
+
"DeepMind Math": clean_math['question'],
|
| 65 |
+
"MMMLU": MMMLU['question'],
|
| 66 |
+
"MMMU": MMMU['question'],
|
| 67 |
+
"ScienceQA": ScienceQA['question'],
|
| 68 |
+
"PubmedQA": PubmedQA['question']
|
| 69 |
+
}
|
| 70 |
+
all_questions = (
|
| 71 |
+
list(D["GSM8k"]) +
|
| 72 |
+
list(D["Olympiad"]) +
|
| 73 |
+
list(D["MMMLU"]) +
|
| 74 |
+
list(D["MMMU"]) +
|
| 75 |
+
list(D["DeepMind Math"]) +
|
| 76 |
+
list(D["Olympiad2"]) +
|
| 77 |
+
list(D["ScienceQA"]) +
|
| 78 |
+
list(D["PubmedQA"])
|
| 79 |
+
)
|
| 80 |
+
texts = all_questions
|
| 81 |
+
index = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
|
| 82 |
|
| 83 |
+
# ------------------------ Retriever TOOL -----------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# ------------------------ Agent setup with timeout ------------------------
|
| 87 |
+
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
|
| 88 |
+
client = InferenceClient(
|
| 89 |
+
model=model_id,
|
| 90 |
+
provider=provider,
|
| 91 |
+
timeout=timeout,
|
| 92 |
+
token=hf_token if hf_token else None,
|
| 93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Bind generation params by partially applying via model kwargs.
|
| 96 |
+
# smolagents InferenceClientModel currently accepts client only; we pass runtime params in task text.
|
| 97 |
+
model = InferenceClientModel(model_id=model_id,client=client)
|
| 98 |
+
agent = CodeAgent(model=model, tools=[classify_and_score, QuestionRetrieverTool])
|
| 99 |
+
agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens} # attach for reference
|
| 100 |
return agent
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# ------------------------ Agent task template -----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
# ------------------------ Gradio glue ------------------------------------
|
| 106 |
def run_pipeline(
|
|
|
|
| 107 |
hf_token,
|
| 108 |
topic,
|
| 109 |
grade,
|
|
|
|
| 112 |
target_dok,
|
| 113 |
attempts,
|
| 114 |
model_id,
|
| 115 |
+
provider,
|
| 116 |
timeout,
|
| 117 |
temperature,
|
| 118 |
+
max_tokens,
|
| 119 |
+
task_type
|
| 120 |
):
|
| 121 |
+
# Build agent per run (or cache if you prefer)
|
| 122 |
+
agent = make_agent(
|
| 123 |
+
hf_token=hf_token.strip(),
|
| 124 |
+
model_id=model_id,
|
| 125 |
+
provider=provider,
|
| 126 |
+
timeout=int(timeout),
|
| 127 |
+
temperature=float(temperature),
|
| 128 |
+
max_tokens=int(max_tokens),
|
| 129 |
+
)
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
task = task_type.format(
|
| 132 |
grade=grade,
|
| 133 |
topic=topic,
|
| 134 |
subject=subject,
|
|
|
|
| 137 |
attempts=int(attempts)
|
| 138 |
)
|
| 139 |
|
| 140 |
+
# The agent will internally call the tool
|
| 141 |
try:
|
| 142 |
+
result_text = agent.run(task, max_steps=int(attempts)*4)
|
| 143 |
except Exception as e:
|
| 144 |
+
result_text = f"ERROR: {e}"
|
| 145 |
|
| 146 |
+
# Try to extract final JSON
|
| 147 |
final_json = ""
|
| 148 |
+
try:
|
| 149 |
+
# find JSON object in result_text (simple heuristic)
|
| 150 |
+
start = result_text.find("{")
|
| 151 |
+
end = result_text.rfind("}")
|
| 152 |
+
if start != -1 and end != -1 and end > start:
|
| 153 |
+
candidate = result_text[start:end+1]
|
| 154 |
final_json = json.dumps(json.loads(candidate), indent=2)
|
| 155 |
+
except Exception:
|
| 156 |
+
final_json = ""
|
| 157 |
|
| 158 |
return final_json, result_text
|
| 159 |
|
| 160 |
+
|
| 161 |
with gr.Blocks() as demo:
|
| 162 |
gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
|
| 163 |
gr.Markdown(
|
| 164 |
+
"This app uses a **CodeAgent** that *calls the scoring tool* "
|
| 165 |
+
"(`classify_and_score`) after each proposal, and revises until it hits the target."
|
| 166 |
)
|
| 167 |
|
| 168 |
+
with gr.Accordion("API Settings", open=False):
|
| 169 |
+
hf_token = gr.Textbox(label="Hugging Face Token (required)", type="password")
|
| 170 |
+
model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
|
| 171 |
+
provider = gr.Textbox(value="novita", label="Provider")
|
| 172 |
+
timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
with gr.Row():
|
| 175 |
topic = gr.Textbox(value="Fractions", label="Topic")
|
| 176 |
grade = gr.Dropdown(
|
| 177 |
+
choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
|
| 178 |
+
"Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
value="Grade 7",
|
| 180 |
label="Grade"
|
| 181 |
)
|
| 182 |
+
subject= gr.Textbox(value="Math", label="Subject")
|
| 183 |
+
task_type = gr.Dropdown(
|
| 184 |
+
choices=["TASK_TMPL", "CLASSIFY_TMPL", "GEN_TMPL", "RAG_TMPL"]
|
| 185 |
+
label= "task type")
|
| 186 |
|
| 187 |
with gr.Row():
|
| 188 |
target_bloom = gr.Dropdown(
|
| 189 |
+
choices=["Remember","Understand","Apply","Analyze","Evaluate","Create","Apply+","Analyze+","Evaluate+"],
|
| 190 |
value="Analyze",
|
| 191 |
label="Target Bloom’s"
|
| 192 |
)
|
| 193 |
target_dok = gr.Dropdown(
|
| 194 |
+
choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
|
| 195 |
value="DOK2-DOK3",
|
| 196 |
+
label="Target DOK"
|
| 197 |
)
|
| 198 |
attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")
|
| 199 |
|
| 200 |
+
with gr.Accordion("" Generation Controls", open=False):
|
| 201 |
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 202 |
max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")
|
| 203 |
|
| 204 |
+
run_btn = gr.Button("Run Agent")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
|
| 207 |
transcript = gr.Textbox(label="Agent Transcript", lines=18)
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
run_btn.click(
|
| 210 |
fn=run_pipeline,
|
| 211 |
+
inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
outputs=[final_json, transcript]
|
| 213 |
)
|
| 214 |
|
| 215 |
+
if __name__ == "__main__":
|
| 216 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|