Spaces:
Sleeping
Sleeping
| import torch | |
| from torchvision import transforms, models | |
| from PIL import Image | |
| import gradio as gr | |
| #model initialization | |
| model= models.resnet18(pretrained=True) | |
| model.fc = torch.nn.Linear(model.fc.in_features,2) | |
| state_dict=torch.load('up500Model.pt', map_location='cpu') | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| #predictions | |
| imgTransforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]) | |
| LABELS =['Fiat 500', 'VW Up'] | |
| def predict(inp): | |
| inp= Image.fromarray(inp.astype('unit8'), 'RGB') | |
| inp =imgTransforms(inp).unsqueeze(0) | |
| with torch.no_grad(): | |
| predictions = torch.nn.functional.softmax(model(inp)[0]) | |
| return {LABELS[i]: float(predictions[i]) for i in range(2)} | |
| examples=[["fiat500.jpg"],["VWUP.jpg"]] | |
| #app deploy | |
| interface = gr.Interface(fn=predict, inputs='image', outputs='label', title='App', description= 'upload the car image', examples=examples, cache_examples= False) | |
| interface.launch() |