Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| from datasets import load_dataset | |
| import os | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "0" # SET the GPUs you want to use | |
| import csv | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| print(device) | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| model_id = "openai/whisper-large-v3" | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
| ) | |
| model.to(device) | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=30, | |
| batch_size=16, | |
| return_timestamps=True, | |
| return_language=True, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| ) | |
| # Specify the folder containing the mp3 files | |
| mp3_folder = "./eng_audio/" | |
| # Get a list of all the mp3 files in the folder | |
| mp3_files = [file for file in os.listdir(mp3_folder) if file.endswith(".mp3")] | |
| # mp3_files = ["p2_17.wav"] | |
| # Create a CSV file to store the transcripts | |
| csv_filename = "transcripts_english.csv" | |
| with open(csv_filename, mode='a', newline='', encoding='utf-8') as csv_file: | |
| fieldnames = ['File Name', 'Transcript', 'Language'] | |
| writer = csv.DictWriter(csv_file, fieldnames=fieldnames) | |
| # Write the header to the CSV file | |
| # writer.writeheader() | |
| # Process each mp3 file and write the results to the CSV file | |
| processed_files_counter = 0 | |
| for mp3_file in mp3_files: | |
| mp3_path = os.path.join(mp3_folder, mp3_file) | |
| save_filename = "tmp.wav" | |
| cmd = f"ffmpeg -i {mp3_path} -ac 1 -ar 16000 {save_filename} -y -hide_banner -loglevel error" | |
| os.system(cmd) | |
| mp3_path = save_filename | |
| result = pipe(mp3_path,generate_kwargs={"language": "english"}) | |
| transcript = result["text"].strip() | |
| lang = result["chunks"][0]["language"] | |
| processed_files_counter += 1 | |
| # Check progress after every 10 files | |
| if processed_files_counter % 10 == 0: | |
| print(f"{processed_files_counter} files processed.") | |
| # Write the file name and transcript to the CSV file | |
| writer.writerow({'File Name': mp3_file, 'Transcript': transcript, 'Language': lang}) | |
| print(f"Transcripts saved to {csv_filename}") | |