Spaces:
Sleeping
Sleeping
Add hf hub stats and weather info tools
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import os
|
| 3 |
from smolagents import CodeAgent, HfApiModel, LiteLLMModel
|
| 4 |
from retriever import load_guest_dataset
|
|
|
|
| 5 |
|
| 6 |
is_running_on_space = os.environ.get('SPACE_ID') is not None
|
| 7 |
if is_running_on_space:
|
|
@@ -12,15 +13,18 @@ else:
|
|
| 12 |
api_base="http://127.0.0.1:11434",
|
| 13 |
num_ctx=8192,)
|
| 14 |
|
| 15 |
-
guest_info_tool = load_guest_dataset()
|
| 16 |
|
| 17 |
# Create Alfred, our gala agent, with the guest info tool
|
| 18 |
-
alfred = CodeAgent(tools=[
|
| 19 |
|
| 20 |
|
| 21 |
def query_guest(guest_name):
|
| 22 |
return alfred.run(f"Tell me about our guest named '{guest_name}'.")
|
| 23 |
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
demo.launch()
|
|
|
|
| 2 |
import os
|
| 3 |
from smolagents import CodeAgent, HfApiModel, LiteLLMModel
|
| 4 |
from retriever import load_guest_dataset
|
| 5 |
+
from tools import *
|
| 6 |
|
| 7 |
is_running_on_space = os.environ.get('SPACE_ID') is not None
|
| 8 |
if is_running_on_space:
|
|
|
|
| 13 |
api_base="http://127.0.0.1:11434",
|
| 14 |
num_ctx=8192,)
|
| 15 |
|
| 16 |
+
# guest_info_tool = load_guest_dataset()
|
| 17 |
|
| 18 |
# Create Alfred, our gala agent, with the guest info tool
|
| 19 |
+
alfred = CodeAgent(tools=[hub_stats_tool, search_tool, weather_info_tool], model=model)
|
| 20 |
|
| 21 |
|
| 22 |
def query_guest(guest_name):
|
| 23 |
return alfred.run(f"Tell me about our guest named '{guest_name}'.")
|
| 24 |
|
| 25 |
+
def ai_builder(builder):
|
| 26 |
+
return alfred.run(f"What is {builder} most downloaded model on huggingface hub?")
|
| 27 |
|
| 28 |
+
|
| 29 |
+
demo = gr.Interface(fn=ai_builder, inputs="text", outputs="text")
|
| 30 |
demo.launch()
|
tools.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import list_models
|
| 2 |
+
from smolagents import DuckDuckGoSearchTool, Tool
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
# Initialize the DuckDuckGo search tool
|
| 6 |
+
search_tool = DuckDuckGoSearchTool()
|
| 7 |
+
|
| 8 |
+
class WeatherInfoTool(Tool):
|
| 9 |
+
name = "weather_info"
|
| 10 |
+
description = "Fetches dummy weather information for a given location."
|
| 11 |
+
inputs = {
|
| 12 |
+
"location": {
|
| 13 |
+
"type": "string",
|
| 14 |
+
"description": "The location to get weather information for."
|
| 15 |
+
}
|
| 16 |
+
}
|
| 17 |
+
output_type = "string"
|
| 18 |
+
|
| 19 |
+
def forward(self, location: str):
|
| 20 |
+
# Dummy weather data
|
| 21 |
+
weather_conditions = [
|
| 22 |
+
{"condition": "Rainy", "temp_c": 15},
|
| 23 |
+
{"condition": "Clear", "temp_c": 25},
|
| 24 |
+
{"condition": "Windy", "temp_c": 20}
|
| 25 |
+
]
|
| 26 |
+
# Randomly select a weather condition
|
| 27 |
+
data = random.choice(weather_conditions)
|
| 28 |
+
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
|
| 29 |
+
|
| 30 |
+
# Initialize the tool
|
| 31 |
+
weather_info_tool = WeatherInfoTool()
|
| 32 |
+
|
| 33 |
+
class HubStatsTool(Tool):
|
| 34 |
+
name = "hub_stats"
|
| 35 |
+
description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
|
| 36 |
+
inputs = {
|
| 37 |
+
"author": {
|
| 38 |
+
"type": "string",
|
| 39 |
+
"description": "The username of the model author/organization to find models from."
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
output_type = "string"
|
| 43 |
+
|
| 44 |
+
def forward(self, author: str):
|
| 45 |
+
try:
|
| 46 |
+
# List models from the specified author, sorted by downloads
|
| 47 |
+
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
| 48 |
+
|
| 49 |
+
if models:
|
| 50 |
+
model = models[0]
|
| 51 |
+
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
| 52 |
+
else:
|
| 53 |
+
return f"No models found for author {author}."
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return f"Error fetching models for {author}: {str(e)}"
|
| 56 |
+
|
| 57 |
+
# Initialize the tool
|
| 58 |
+
hub_stats_tool = HubStatsTool()
|