Spaces:
Running
Running
File size: 12,051 Bytes
ba99c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
"""
Elo Rating Calculation Module for BigCodeArena
Contains Bradley-Terry Model with confidence intervals and traditional Elo calculation
"""
import math
import numpy as np
import pandas as pd
from collections import defaultdict
from tqdm import tqdm
from sklearn.linear_model import LogisticRegression
import yaml
import os
def load_model_metadata():
"""Load model metadata from api_config.yaml"""
try:
config_path = os.path.join(os.path.dirname(__file__), "api_config.yaml")
with open(config_path, "r", encoding="utf-8") as file:
config = yaml.safe_load(file)
metadata = {}
for model_key, model_config in config.items():
if isinstance(model_config, dict):
model_name = model_config.get("model", model_key)
metadata[model_name] = {
"organization": model_config.get("organization", "Unknown"),
"license": model_config.get("license", "Unknown"),
}
# Also store with the key name for lookup
metadata[model_key] = {
"organization": model_config.get("organization", "Unknown"),
"license": model_config.get("license", "Unknown"),
}
return metadata
except Exception as e:
print(f"Warning: Could not load model metadata: {e}")
return {}
def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000, sample_weight=None):
"""Compute Elo ratings using Bradley-Terry Model with Maximum Likelihood Estimation"""
# Get all unique models
all_models = sorted(list(set(df["model_a"].tolist() + df["model_b"].tolist())))
# Create win matrices for each outcome type
# Initialize empty matrices with float dtype to avoid warnings
ptbl_a_win = pd.DataFrame(0.0, index=all_models, columns=all_models)
ptbl_b_win = pd.DataFrame(0.0, index=all_models, columns=all_models)
ptbl_tie = pd.DataFrame(0.0, index=all_models, columns=all_models)
# Count wins for model_a
model_a_wins = df[df["winner"] == "model_a"]
if not model_a_wins.empty:
a_win_counts = model_a_wins.groupby(["model_a", "model_b"]).size()
for (model_a, model_b), count in a_win_counts.items():
ptbl_a_win.loc[model_a, model_b] = count
# Count wins for model_b
model_b_wins = df[df["winner"] == "model_b"]
if not model_b_wins.empty:
b_win_counts = model_b_wins.groupby(["model_a", "model_b"]).size()
for (model_a, model_b), count in b_win_counts.items():
ptbl_b_win.loc[model_a, model_b] = count
# Count ties
ties = df[df["winner"].isin(["tie", "tie (bothbad)"])]
if not ties.empty:
tie_counts = ties.groupby(["model_a", "model_b"]).size()
for (model_a, model_b), count in tie_counts.items():
# For ties, we count 0.5 win for each model
ptbl_tie.loc[model_a, model_b] = count * 0.5
ptbl_tie.loc[model_b, model_a] = count * 0.5
models = pd.Series(np.arange(len(all_models)), index=all_models)
p = len(models)
# Create training data for logistic regression
X = []
Y = []
sample_weights = []
for model_a in all_models:
for model_b in all_models:
if model_a == model_b:
continue
# Count total games between these models
a_wins = ptbl_a_win.loc[model_a, model_b]
b_wins = ptbl_b_win.loc[model_a, model_b]
ties = ptbl_tie.loc[model_a, model_b]
total_games = a_wins + b_wins + ties
if total_games == 0:
continue
# Create feature vector: difference in model strengths
x = np.zeros(p)
x[models[model_a]] = 1.0
x[models[model_b]] = -1.0
# Add data points for model_a wins
if a_wins > 0:
X.append(x)
Y.append(1) # model_a wins
sample_weights.append(a_wins)
# Add data points for model_b wins (model_a loses)
if b_wins > 0:
X.append(x) # same feature vector
Y.append(0) # model_a loses
sample_weights.append(b_wins)
# Add data points for ties - treat as half wins for model_a
if ties > 0:
# Add ties as both wins and losses with half weight each
X.append(x)
Y.append(1) # model_a wins (tie counted as win)
sample_weights.append(ties / 2)
X.append(x)
Y.append(0) # model_a loses (tie counted as loss)
sample_weights.append(ties / 2)
if len(X) == 0 or len(set(Y)) < 2:
# Not enough data or no variation in outcomes
return pd.Series({model: INIT_RATING for model in all_models}).sort_values(ascending=False)
X = np.array(X)
Y = np.array(Y)
sample_weights = np.array(sample_weights)
# Fit logistic regression
lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-6, max_iter=1000)
lr.fit(X, Y, sample_weight=sample_weights)
# Convert coefficients to Elo ratings
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
"""Get bootstrap results for confidence interval calculation"""
rows = []
for i in tqdm(range(num_round), desc="bootstrap"):
# Bootstrap sample with replacement
bootstrap_sample = battles.sample(frac=1.0, replace=True)
try:
elo_result = func_compute_elo(bootstrap_sample)
rows.append(elo_result)
except Exception as e:
# Skip failed bootstrap samples
continue
if not rows:
return pd.DataFrame()
df = pd.DataFrame(rows)
# Sort columns by median Elo score (descending)
return df[df.median().sort_values(ascending=False).index]
def compute_online_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
"""Compute Elo ratings for models based on battle results (legacy function for compatibility)"""
rating = defaultdict(lambda: INIT_RATING)
for rd, model_a, model_b, winner in battles[
["model_a", "model_b", "winner"]
].itertuples():
ra = rating[model_a]
rb = rating[model_b]
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
if winner == "model_a":
sa = 1
elif winner == "model_b":
sa = 0
elif winner == "tie" or winner == "tie (bothbad)":
sa = 0.5
else:
raise Exception(f"unexpected vote {winner}")
rating[model_a] += K * (sa - ea)
rating[model_b] += K * (1 - sa - eb)
# calibrate llama-13b to 800 if it exists
if "llama-13b" in rating:
delta = 800 - rating["llama-13b"]
for model in battles["model_a"].unique():
rating[model] += delta
return rating
def calculate_elo_with_confidence_intervals(battles_df, vote_counts):
"""
Main function to calculate Elo ratings with confidence intervals
Args:
battles_df (pd.DataFrame): DataFrame with columns ['model_a', 'model_b', 'winner']
vote_counts (dict): Dictionary with vote counts for each model
Returns:
tuple: (elo_ratings, confidence_intervals)
"""
confidence_intervals = {} # Initialize to avoid uninitialized variable error
# Check if we have sufficient data for Bradley-Terry model
if len(battles_df) < 2:
# Not enough battles, use default ratings
all_models = set(
battles_df["model_a"].tolist() + battles_df["model_b"].tolist()
)
elo_ratings = pd.Series({model: 1000 for model in all_models})
confidence_intervals = {model: 0 for model in all_models}
else:
try:
# Use the new Bradley-Terry Model
elo_ratings = compute_mle_elo(battles_df)
# Calculate confidence intervals using bootstrap
if len(battles_df) >= 10: # Only calculate CI if we have enough data
try:
bootstrap_df = get_bootstrap_result(
battles_df, compute_mle_elo, num_round=100
)
# Calculate 95% confidence intervals
if not bootstrap_df.empty:
for model in bootstrap_df.columns:
scores = bootstrap_df[model].dropna()
if len(scores) > 0:
lower = scores.quantile(0.025)
upper = scores.quantile(0.975)
median_score = scores.median()
ci_margin = (upper - lower) / 2
confidence_intervals[model] = ci_margin
else:
confidence_intervals[model] = 0
else:
# Fallback: no confidence intervals
for model in elo_ratings.index:
confidence_intervals[model] = 0
except Exception as bootstrap_error:
print(
f"Bootstrap calculation failed: {bootstrap_error}, skipping confidence intervals"
)
for model in elo_ratings.index:
confidence_intervals[model] = 0
else:
# Not enough data for bootstrap, set CI to 0
for model in elo_ratings.index:
confidence_intervals[model] = 0
except Exception as e:
# Fallback to old method if Bradley-Terry fails
print(
f"Bradley-Terry calculation failed: {e}, falling back to online Elo"
)
old_elo_ratings = compute_online_elo(battles_df)
elo_ratings = pd.Series(old_elo_ratings)
confidence_intervals = {model: 0 for model in elo_ratings.index}
return elo_ratings, confidence_intervals
def create_ranking_dataframe(elo_ratings, confidence_intervals, vote_counts):
"""
Create ranking DataFrame with all necessary columns
Args:
elo_ratings (pd.Series): Elo ratings for each model
confidence_intervals (dict): Confidence interval margins for each model
vote_counts (dict): Vote counts for each model
Returns:
pd.DataFrame: Ranking table with columns [Rank, Model, Score, 95% CI (±), Votes, Organization, License]
"""
# Load model metadata
metadata = load_model_metadata()
# Create ranking list with Elo ratings and confidence intervals
ranking_list = []
for model in elo_ratings.index:
ci_margin = confidence_intervals.get(model, 0)
# Get metadata for this model
model_metadata = metadata.get(model, {})
organization = model_metadata.get("organization", "Unknown")
license_type = model_metadata.get("license", "Unknown")
ranking_list.append(
{
"Model": model,
"Score": round(elo_ratings[model], 1),
"95% CI (±)": round(ci_margin, 1) if ci_margin > 0 else "-",
"Votes": vote_counts[model],
"Organization": organization,
"License": license_type,
}
)
# Sort by Elo rating (highest first)
ranking_df = pd.DataFrame(ranking_list).sort_values("Score", ascending=False)
ranking_df["Rank"] = range(1, len(ranking_df) + 1)
# Reorder columns
ranking_df = ranking_df[
["Rank", "Model", "Score", "95% CI (±)", "Votes", "Organization", "License"]
]
return ranking_df
|