Spaces:
Runtime error
Runtime error
initialize app
Browse files- app.py +295 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pprint as pp
|
| 3 |
+
from collections import OrderedDict, defaultdict
|
| 4 |
+
|
| 5 |
+
import diff_viewer
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from datasets import load_from_disk
|
| 9 |
+
|
| 10 |
+
DATASET_DIR_PATH_BEFORE_CLEAN_SELECT = os.getenv("DATASET_DIR_PATH_BEFORE_CLEAN_SELECT")
|
| 11 |
+
OPERATION_TYPES = [
|
| 12 |
+
"Applied filter",
|
| 13 |
+
"Applied deduplication function",
|
| 14 |
+
"Applied map function",
|
| 15 |
+
]
|
| 16 |
+
MAX_LEN_DS_CHECKS = os.getenv("MAX_LEN_DS_CHECKS")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_ds(ds_path):
|
| 20 |
+
ds = load_from_disk(ds_path)
|
| 21 |
+
return ds
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def next_idx(idx: int):
|
| 25 |
+
idx += 1
|
| 26 |
+
return idx % len(st.session_state["ds"])
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def previous_idx(idx: int):
|
| 30 |
+
idx -= 1
|
| 31 |
+
return idx % len(st.session_state["ds"])
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def on_click_next():
|
| 35 |
+
st.session_state["idx_1"] = next_idx(st.session_state["idx_1"])
|
| 36 |
+
st.session_state["idx_2"] = next_idx(st.session_state["idx_2"])
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def on_click_previous():
|
| 40 |
+
st.session_state["idx_1"] = previous_idx(st.session_state["idx_1"])
|
| 41 |
+
st.session_state["idx_2"] = previous_idx(st.session_state["idx_2"])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def on_ds_change(ds_path):
|
| 45 |
+
st.session_state["ds"] = get_ds(ds_path)
|
| 46 |
+
st.session_state["idx_1"] = 0
|
| 47 |
+
st.session_state["idx_2"] = 1 if len(st.session_state["ds"]) > 1 else 0
|
| 48 |
+
st.session_state["ds_name"] = ds_path
|
| 49 |
+
st.session_state["ds_max_docs"] = len(st.session_state["ds"])
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_log_stats_df(raw_log):
|
| 53 |
+
data = OrderedDict(
|
| 54 |
+
{
|
| 55 |
+
"Order": [],
|
| 56 |
+
"Name": [],
|
| 57 |
+
"Initial number of samples": [],
|
| 58 |
+
"Final number of samples": [],
|
| 59 |
+
"Initial size in bytes": [],
|
| 60 |
+
"Final size in bytes": [],
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
metric_dict = defaultdict(lambda: {})
|
| 65 |
+
order = 0
|
| 66 |
+
for line in raw_log.split("\n"):
|
| 67 |
+
for metric_name in list(data.keys()) + OPERATION_TYPES:
|
| 68 |
+
|
| 69 |
+
if metric_name == "Name" or metric_name == "Order":
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
if metric_name not in line:
|
| 73 |
+
continue
|
| 74 |
+
|
| 75 |
+
if (
|
| 76 |
+
metric_name == "Removed percentage"
|
| 77 |
+
and "Removed percentage in bytes" in line
|
| 78 |
+
):
|
| 79 |
+
continue
|
| 80 |
+
|
| 81 |
+
if (
|
| 82 |
+
metric_name == "Deduplicated percentage"
|
| 83 |
+
and "Deduplicated percentage in bytes" in line
|
| 84 |
+
):
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
value = line.split(metric_name)[1].split(" ")[1]
|
| 88 |
+
|
| 89 |
+
if metric_name in OPERATION_TYPES:
|
| 90 |
+
operation_name = value
|
| 91 |
+
metric_dict[operation_name]["Order"] = order
|
| 92 |
+
order += 1
|
| 93 |
+
continue
|
| 94 |
+
|
| 95 |
+
assert (
|
| 96 |
+
metric_name not in metric_dict[operation_name]
|
| 97 |
+
), f"operation_name: {operation_name}\n\nvalue: {value}\n\nmetric_dict: {pp.pformat(metric_dict)} \n\nmetric_name: {metric_name} \n\nline: {line}"
|
| 98 |
+
metric_dict[operation_name][metric_name] = value
|
| 99 |
+
for name, data_dict in metric_dict.items():
|
| 100 |
+
for metric_name in data.keys():
|
| 101 |
+
if metric_name == "Name":
|
| 102 |
+
data[metric_name].append(name)
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
data[metric_name].append(data_dict[metric_name])
|
| 106 |
+
df = pd.DataFrame(data)
|
| 107 |
+
df.rename(
|
| 108 |
+
{
|
| 109 |
+
"Initial size in bytes": "Initial size (GB)",
|
| 110 |
+
"Final size in bytes": "Final size (GB)",
|
| 111 |
+
},
|
| 112 |
+
axis=1,
|
| 113 |
+
inplace=True,
|
| 114 |
+
)
|
| 115 |
+
df["% samples removed"] = (
|
| 116 |
+
(
|
| 117 |
+
df["Initial number of samples"].astype(float)
|
| 118 |
+
- df["Final number of samples"].astype(float)
|
| 119 |
+
)
|
| 120 |
+
/ df["Initial number of samples"].astype(float)
|
| 121 |
+
* 100
|
| 122 |
+
)
|
| 123 |
+
df["Size (GB) % removed"] = (
|
| 124 |
+
(df["Initial size (GB)"].astype(float) - df["Final size (GB)"].astype(float))
|
| 125 |
+
/ df["Initial size (GB)"].astype(float)
|
| 126 |
+
* 100
|
| 127 |
+
)
|
| 128 |
+
return df
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def get_logs_stats(log_path):
|
| 132 |
+
with open(log_path) as f:
|
| 133 |
+
raw_log = f.read()
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
df = get_log_stats_df(raw_log)
|
| 137 |
+
st.dataframe(df)
|
| 138 |
+
except Exception as e:
|
| 139 |
+
st.write(e)
|
| 140 |
+
st.write("Subset of the logs:")
|
| 141 |
+
subcontent = [
|
| 142 |
+
line
|
| 143 |
+
for line in raw_log.split("\n")
|
| 144 |
+
if "INFO - __main__" in line
|
| 145 |
+
and "Examples of" not in line
|
| 146 |
+
and "Examples n°" not in line
|
| 147 |
+
]
|
| 148 |
+
st.write(subcontent)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def meta_component(idx_key: str = "idx_1"):
|
| 152 |
+
if "meta" not in st.session_state["ds"][st.session_state[idx_key]]:
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
with st.expander("See meta field of the example"):
|
| 156 |
+
meta = st.session_state["ds"][st.session_state["idx_1"]]["meta"]
|
| 157 |
+
st.write(meta)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def filter_page():
|
| 161 |
+
index_example = st.number_input("Index of the chosen example", min_value=0, max_value=st.session_state["ds_max_docs"] -1, value=0, step=1)
|
| 162 |
+
st.session_state["idx_1"] = index_example
|
| 163 |
+
st.session_state["idx_2"] = next_idx(index_example)
|
| 164 |
+
idx_1 = st.session_state["idx_1"]
|
| 165 |
+
idx_2 = st.session_state["idx_2"]
|
| 166 |
+
text_1 = st.session_state["ds"][idx_1]["text"]
|
| 167 |
+
text_2 = st.session_state["ds"][idx_2]["text"]
|
| 168 |
+
|
| 169 |
+
st.markdown(
|
| 170 |
+
f"<h1 style='text-align: center'>Some examples of filtered out texts</h1>",
|
| 171 |
+
unsafe_allow_html=True,
|
| 172 |
+
)
|
| 173 |
+
# col_button_previous, _, col_button_next = st.columns(3)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# col_button_next.button(
|
| 177 |
+
# "Go to next example",
|
| 178 |
+
# key=None,
|
| 179 |
+
# help=None,
|
| 180 |
+
# on_click=on_click_next,
|
| 181 |
+
# args=None,
|
| 182 |
+
# kwargs=None,
|
| 183 |
+
# )
|
| 184 |
+
# col_button_previous.button(
|
| 185 |
+
# "Go to previous example",
|
| 186 |
+
# key=None,
|
| 187 |
+
# help=None,
|
| 188 |
+
# on_click=on_click_previous,
|
| 189 |
+
# args=None,
|
| 190 |
+
# kwargs=None,
|
| 191 |
+
# )
|
| 192 |
+
col_1, col_2 = st.columns(2)
|
| 193 |
+
with col_1:
|
| 194 |
+
st.subheader(f"Example n°{idx_1}")
|
| 195 |
+
meta_component(idx_key="idx_1")
|
| 196 |
+
text_1_show = text_1.replace("\n", "<br>")
|
| 197 |
+
st.markdown(f"<div>{text_1_show}</div>", unsafe_allow_html=True)
|
| 198 |
+
|
| 199 |
+
with col_2:
|
| 200 |
+
st.subheader(f"Example n°{idx_2}")
|
| 201 |
+
meta_component(idx_key="idx_2")
|
| 202 |
+
text_2_show = text_2.replace("\n", "<br>")
|
| 203 |
+
st.markdown(f"<div>{text_2_show}</div>", unsafe_allow_html=True)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def dedup_or_cleaning_page():
|
| 207 |
+
index_example = st.number_input("Index of the chosen example", min_value=0, max_value=st.session_state["ds_max_docs"] -1, value=0, step=1)
|
| 208 |
+
st.session_state["idx_1"] = index_example
|
| 209 |
+
st.session_state["idx_2"] = next_idx(index_example)
|
| 210 |
+
|
| 211 |
+
# col_button_previous, col_title, col_button_next = st.columns(3)
|
| 212 |
+
# col_title.markdown(
|
| 213 |
+
# f"<h1 style='text-align: center'>Example n°{st.session_state['idx_1']}</h1>",
|
| 214 |
+
# unsafe_allow_html=True,
|
| 215 |
+
# )
|
| 216 |
+
# col_button_next.button(
|
| 217 |
+
# "Go to next example",
|
| 218 |
+
# key=None,
|
| 219 |
+
# help=None,
|
| 220 |
+
# on_click=on_click_next,
|
| 221 |
+
# args=None,
|
| 222 |
+
# kwargs=None,
|
| 223 |
+
# )
|
| 224 |
+
# col_button_previous.button(
|
| 225 |
+
# "Go to previous example",
|
| 226 |
+
# key=None,
|
| 227 |
+
# help=None,
|
| 228 |
+
# on_click=on_click_previous,
|
| 229 |
+
# args=None,
|
| 230 |
+
# kwargs=None,
|
| 231 |
+
# )
|
| 232 |
+
|
| 233 |
+
text = st.session_state["ds"][st.session_state["idx_1"]]["text"]
|
| 234 |
+
old_text = st.session_state["ds"][st.session_state["idx_1"]]["old_text"]
|
| 235 |
+
st.markdown(
|
| 236 |
+
f"<h2 style='text-align: center'>Changes applied</h1>", unsafe_allow_html=True
|
| 237 |
+
)
|
| 238 |
+
col_text_1, col_text_2 = st.columns(2)
|
| 239 |
+
with col_text_1:
|
| 240 |
+
st.subheader("Old text")
|
| 241 |
+
with col_text_2:
|
| 242 |
+
st.subheader("New text")
|
| 243 |
+
diff_viewer.diff_viewer(old_text=old_text, new_text=text, lang="none")
|
| 244 |
+
meta_component(idx_key="idx_1")
|
| 245 |
+
|
| 246 |
+
with st.expander("See full old and new texts of the example"):
|
| 247 |
+
text_show = text.replace("\n", "<br>")
|
| 248 |
+
old_text_show = old_text.replace("\n", "<br>")
|
| 249 |
+
|
| 250 |
+
col_1, col_2 = st.columns(2)
|
| 251 |
+
with col_1:
|
| 252 |
+
st.subheader("Old text")
|
| 253 |
+
st.markdown(f"<div>{old_text_show}</div>", unsafe_allow_html=True)
|
| 254 |
+
with col_2:
|
| 255 |
+
st.subheader("New text")
|
| 256 |
+
st.markdown(f"<div>{text_show}</div>", unsafe_allow_html=True)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# Streamlit page
|
| 260 |
+
st.set_page_config(page_title="Dataset explorer", page_icon=":hugging_face:", layout="wide")
|
| 261 |
+
st.write(
|
| 262 |
+
"The purpose of this application is to sequentially view the changes made to a dataset."
|
| 263 |
+
)
|
| 264 |
+
col_option_clean, col_option_ds = st.columns(2)
|
| 265 |
+
|
| 266 |
+
CLEANING_VERSIONS = sorted(list(os.listdir(DATASET_DIR_PATH_BEFORE_CLEAN_SELECT)), reverse=True)
|
| 267 |
+
option_clean = col_option_clean.selectbox(
|
| 268 |
+
"Select the cleaning version", CLEANING_VERSIONS
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
DATASET_DIR_PATH = os.path.join(DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, option_clean)
|
| 272 |
+
dataset_names = sorted(list(os.listdir(DATASET_DIR_PATH)))
|
| 273 |
+
option_ds = col_option_ds.selectbox("Select the dataset", dataset_names)
|
| 274 |
+
|
| 275 |
+
checks_path = os.path.join(DATASET_DIR_PATH, option_ds, "checks")
|
| 276 |
+
checks_names = sorted(list(os.listdir(checks_path)))
|
| 277 |
+
|
| 278 |
+
log_path = os.path.join(DATASET_DIR_PATH, option_ds, "logs.txt")
|
| 279 |
+
get_logs_stats(log_path=log_path)
|
| 280 |
+
|
| 281 |
+
option_check = st.selectbox("Select the operation applied to inspect", checks_names)
|
| 282 |
+
ds_path = os.path.join(checks_path, option_check)
|
| 283 |
+
|
| 284 |
+
if "ds" not in st.session_state or ds_path != st.session_state["ds_name"]:
|
| 285 |
+
on_ds_change(ds_path)
|
| 286 |
+
|
| 287 |
+
if len(st.session_state["ds"]) == MAX_LEN_DS_CHECKS:
|
| 288 |
+
st.warning(
|
| 289 |
+
f"Note: only a subset of size {MAX_LEN_DS_CHECKS} of the modified / filtered examples can be shown in this application"
|
| 290 |
+
)
|
| 291 |
+
with st.expander("See details of the available checks"):
|
| 292 |
+
st.write(st.session_state["ds"])
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
_ = filter_page() if "_filter_" in option_check else dedup_or_cleaning_page()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets==1.17.0
|
| 2 |
+
pandas==1.3.5
|
| 3 |
+
streamlit_diff_viewer==0.0.2
|