Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Commit 
							
							·
						
						497b535
	
1
								Parent(s):
							
							f835f68
								
update the app, remove the failing model
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,8 +1,9 @@ | |
| 1 | 
             
            import os
         | 
| 2 | 
             
            import gradio as gr
         | 
| 3 |  | 
| 4 | 
            -
            from haystack.components.generators import  | 
| 5 | 
            -
            from haystack.components.builders. | 
|  | |
| 6 | 
             
            from haystack import Pipeline
         | 
| 7 | 
             
            from haystack.utils import Secret
         | 
| 8 | 
             
            from image_captioner import ImageCaptioner
         | 
| @@ -17,25 +18,29 @@ description = """ | |
| 17 |  | 
| 18 | 
             
            It uses [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) model for image-to-text caption generation task.
         | 
| 19 |  | 
| 20 | 
            -
            For Instagrammable captions,  | 
| 21 |  | 
| 22 | 
            -
            Built by [Bilge Yucel](https://twitter.com/bilgeycl) using [Haystack | 
| 23 | 
             
            """
         | 
| 24 |  | 
| 25 | 
            -
            prompt_template = | 
| 26 | 
             
            You will receive a descriptive text of a photo.
         | 
| 27 | 
             
            Try to generate a nice Instagram caption with a phrase rhyming with the text. Include emojis in the caption.
         | 
| 28 | 
            -
             | 
|  | |
| 29 | 
             
            Descriptive text: {{caption}};
         | 
| 30 | 
             
            Instagram Caption:
         | 
| 31 | 
            -
            """
         | 
| 32 |  | 
| 33 | 
             
            hf_api_key = os.environ["HF_API_KEY"]
         | 
| 34 |  | 
| 35 | 
             
            def generate_caption(image_file_path, model_name):
         | 
| 36 | 
             
                image_to_text = ImageCaptioner(model_name="Salesforce/blip-image-captioning-base")
         | 
| 37 | 
            -
                prompt_builder =  | 
| 38 | 
            -
                generator =  | 
|  | |
|  | |
|  | |
| 39 |  | 
| 40 | 
             
                captioning_pipeline = Pipeline()
         | 
| 41 | 
             
                captioning_pipeline.add_component("image_to_text", image_to_text)
         | 
| @@ -46,7 +51,7 @@ def generate_caption(image_file_path, model_name): | |
| 46 | 
             
                captioning_pipeline.connect("prompt_builder", "generator")
         | 
| 47 |  | 
| 48 | 
             
                result = captioning_pipeline.run({"image_to_text":{"image_file_path":image_file_path}})
         | 
| 49 | 
            -
                return result["generator"]["replies"][0]
         | 
| 50 |  | 
| 51 | 
             
            with gr.Blocks(theme="soft") as demo:
         | 
| 52 | 
             
                gr.Markdown(value=description)
         | 
| @@ -54,8 +59,8 @@ with gr.Blocks(theme="soft") as demo: | |
| 54 | 
             
                    image = gr.Image(type="filepath")
         | 
| 55 | 
             
                    with gr.Column():
         | 
| 56 | 
             
                        model_name = gr.Dropdown(
         | 
| 57 | 
            -
                            [" | 
| 58 | 
            -
                            value=" | 
| 59 | 
             
                            label="Choose your model!"
         | 
| 60 | 
             
                            )
         | 
| 61 | 
             
                        gr.Examples(["./whale.png", "./rainbow.jpeg", "./selfie.png"], inputs=image, label="Click on any example") 
         | 
|  | |
| 1 | 
             
            import os
         | 
| 2 | 
             
            import gradio as gr
         | 
| 3 |  | 
| 4 | 
            +
            from haystack.components.generators.chat import HuggingFaceAPIChatGenerator
         | 
| 5 | 
            +
            from haystack.components.builders.chat_prompt_builder import ChatPromptBuilder
         | 
| 6 | 
            +
            from haystack.dataclasses import ChatMessage
         | 
| 7 | 
             
            from haystack import Pipeline
         | 
| 8 | 
             
            from haystack.utils import Secret
         | 
| 9 | 
             
            from image_captioner import ImageCaptioner
         | 
|  | |
| 18 |  | 
| 19 | 
             
            It uses [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) model for image-to-text caption generation task.
         | 
| 20 |  | 
| 21 | 
            +
            For Instagrammable captions, try different text-to-text models to see how they react to the same prompt.
         | 
| 22 |  | 
| 23 | 
            +
            Built by [Bilge Yucel](https://twitter.com/bilgeycl) using [Haystack](https://github.com/deepset-ai/haystack) 💙
         | 
| 24 | 
             
            """
         | 
| 25 |  | 
| 26 | 
            +
            prompt_template =[ChatMessage.from_user("""
         | 
| 27 | 
             
            You will receive a descriptive text of a photo.
         | 
| 28 | 
             
            Try to generate a nice Instagram caption with a phrase rhyming with the text. Include emojis in the caption.
         | 
| 29 | 
            +
            Just return one option without alternatives. Don't use hashtags.           
         | 
| 30 | 
            +
                                                                                             
         | 
| 31 | 
             
            Descriptive text: {{caption}};
         | 
| 32 | 
             
            Instagram Caption:
         | 
| 33 | 
            +
            """)]
         | 
| 34 |  | 
| 35 | 
             
            hf_api_key = os.environ["HF_API_KEY"]
         | 
| 36 |  | 
| 37 | 
             
            def generate_caption(image_file_path, model_name):
         | 
| 38 | 
             
                image_to_text = ImageCaptioner(model_name="Salesforce/blip-image-captioning-base")
         | 
| 39 | 
            +
                prompt_builder = ChatPromptBuilder(template=prompt_template, required_variables="*")
         | 
| 40 | 
            +
                generator = HuggingFaceAPIChatGenerator(
         | 
| 41 | 
            +
                    api_type="serverless_inference_api", 
         | 
| 42 | 
            +
                    api_params={"model": model_name}, 
         | 
| 43 | 
            +
                    token=Secret.from_token(hf_api_key))
         | 
| 44 |  | 
| 45 | 
             
                captioning_pipeline = Pipeline()
         | 
| 46 | 
             
                captioning_pipeline.add_component("image_to_text", image_to_text)
         | 
|  | |
| 51 | 
             
                captioning_pipeline.connect("prompt_builder", "generator")
         | 
| 52 |  | 
| 53 | 
             
                result = captioning_pipeline.run({"image_to_text":{"image_file_path":image_file_path}})
         | 
| 54 | 
            +
                return result["generator"]["replies"][0].text
         | 
| 55 |  | 
| 56 | 
             
            with gr.Blocks(theme="soft") as demo:
         | 
| 57 | 
             
                gr.Markdown(value=description)
         | 
|  | |
| 59 | 
             
                    image = gr.Image(type="filepath")
         | 
| 60 | 
             
                    with gr.Column():
         | 
| 61 | 
             
                        model_name = gr.Dropdown(
         | 
| 62 | 
            +
                            ["deepseek-ai/DeepSeek-V3.1-Terminus", "meta-llama/Llama-3.3-70B-Instruct", "openai/gpt-oss-20b", "Qwen/Qwen3-4B-Instruct-2507"], 
         | 
| 63 | 
            +
                            value="deepseek-ai/DeepSeek-V3.1-Terminus", 
         | 
| 64 | 
             
                            label="Choose your model!"
         | 
| 65 | 
             
                            )
         | 
| 66 | 
             
                        gr.Examples(["./whale.png", "./rainbow.jpeg", "./selfie.png"], inputs=image, label="Click on any example") 
         | 
