Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
# Setup model
|
| 3 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
@@ -19,3 +25,90 @@ def load_model():
|
|
| 19 |
torch_dtype=torch_dtype,
|
| 20 |
device=device,
|
| 21 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import base64
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 7 |
|
| 8 |
# Setup model
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 25 |
torch_dtype=torch_dtype,
|
| 26 |
device=device,
|
| 27 |
)
|
| 28 |
+
|
| 29 |
+
asr_pipeline = load_model()
|
| 30 |
+
|
| 31 |
+
st.title("Swedish Speech-to-Text Demo")
|
| 32 |
+
|
| 33 |
+
# Audio Upload Option
|
| 34 |
+
uploaded_file = st.file_uploader("Ladda upp en ljudfil", type=["wav", "mp3", "flac"])
|
| 35 |
+
|
| 36 |
+
# JavaScript for recording audio
|
| 37 |
+
audio_recorder_js = """
|
| 38 |
+
<script>
|
| 39 |
+
let mediaRecorder;
|
| 40 |
+
let audioChunks = [];
|
| 41 |
+
let isRecording = false;
|
| 42 |
+
|
| 43 |
+
function startRecording() {
|
| 44 |
+
if (!isRecording) {
|
| 45 |
+
isRecording = true;
|
| 46 |
+
navigator.mediaDevices.getUserMedia({ audio: true }).then(stream => {
|
| 47 |
+
mediaRecorder = new MediaRecorder(stream);
|
| 48 |
+
audioChunks = [];
|
| 49 |
+
mediaRecorder.ondataavailable = event => {
|
| 50 |
+
audioChunks.push(event.data);
|
| 51 |
+
};
|
| 52 |
+
mediaRecorder.onstop = () => {
|
| 53 |
+
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
|
| 54 |
+
const reader = new FileReader();
|
| 55 |
+
reader.readAsDataURL(audioBlob);
|
| 56 |
+
reader.onloadend = () => {
|
| 57 |
+
const base64Audio = reader.result.split(',')[1];
|
| 58 |
+
fetch('/save_audio', {
|
| 59 |
+
method: 'POST',
|
| 60 |
+
headers: { 'Content-Type': 'application/json' },
|
| 61 |
+
body: JSON.stringify({ audio: base64Audio })
|
| 62 |
+
}).then(response => response.json()).then(data => {
|
| 63 |
+
console.log(data);
|
| 64 |
+
window.location.reload();
|
| 65 |
+
});
|
| 66 |
+
};
|
| 67 |
+
};
|
| 68 |
+
mediaRecorder.start();
|
| 69 |
+
});
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
function stopRecording() {
|
| 74 |
+
if (isRecording) {
|
| 75 |
+
isRecording = false;
|
| 76 |
+
mediaRecorder.stop();
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
</script>
|
| 80 |
+
|
| 81 |
+
<button onclick="startRecording()">🎤 Starta inspelning</button>
|
| 82 |
+
<button onclick="stopRecording()">⏹️ Stoppa inspelning</button>
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
st.components.v1.html(audio_recorder_js)
|
| 86 |
+
|
| 87 |
+
# Processing audio input (uploaded file or recorded)
|
| 88 |
+
audio_path = None
|
| 89 |
+
|
| 90 |
+
if uploaded_file is not None:
|
| 91 |
+
# Save uploaded file to a temp location
|
| 92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_audio:
|
| 93 |
+
temp_audio.write(uploaded_file.read())
|
| 94 |
+
audio_path = temp_audio.name
|
| 95 |
+
|
| 96 |
+
elif "audio_data" in st.session_state and st.session_state["audio_data"]:
|
| 97 |
+
# Decode base64 audio from JavaScript recording
|
| 98 |
+
audio_bytes = base64.b64decode(st.session_state["audio_data"])
|
| 99 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
| 100 |
+
temp_audio.write(audio_bytes)
|
| 101 |
+
audio_path = temp_audio.name
|
| 102 |
+
|
| 103 |
+
# Transcribe if we have audio
|
| 104 |
+
if audio_path:
|
| 105 |
+
st.audio(audio_path, format="audio/wav")
|
| 106 |
+
|
| 107 |
+
with st.spinner("Transkriberar..."):
|
| 108 |
+
transcription = asr_pipeline(audio_path)["text"]
|
| 109 |
+
|
| 110 |
+
st.subheader("📜 Transkription:")
|
| 111 |
+
st.write(transcription)
|
| 112 |
+
|
| 113 |
+
# Cleanup temp file
|
| 114 |
+
os.remove(audio_path)
|