Spaces:
Runtime error
Runtime error
Commit
·
87110a5
1
Parent(s):
0c079e6
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import scipy.stats as stats
|
| 4 |
+
from fpdf import FPDF
|
| 5 |
+
import base64
|
| 6 |
+
import os
|
| 7 |
+
from plots import test_profile
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
# Function to calculate z-score
|
| 12 |
+
def calculate_z_score(test_score, mean, std_dev):
|
| 13 |
+
return (test_score - mean) / std_dev
|
| 14 |
+
|
| 15 |
+
def z_score_calculator(value, norm_mean, norm_sd):
|
| 16 |
+
z_value = (value - norm_mean) / norm_sd
|
| 17 |
+
stanine_value = round(1.25 * z_value + 5.5)
|
| 18 |
+
z_score = round(z_value, 2)
|
| 19 |
+
return z_score, stanine_value
|
| 20 |
+
|
| 21 |
+
def bnt_calculator(age, education, bnt):
|
| 22 |
+
if age <= 60 and education <= 12:
|
| 23 |
+
norm_mean = 54.5
|
| 24 |
+
norm_sd = 3.2
|
| 25 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
| 26 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 27 |
+
elif age <= 60 and education > 12:
|
| 28 |
+
norm_mean = 54.0
|
| 29 |
+
norm_sd = 4.4
|
| 30 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
| 31 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 32 |
+
elif age > 60 and education <= 12:
|
| 33 |
+
norm_mean = 54.8
|
| 34 |
+
norm_sd = 3.3
|
| 35 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
| 36 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 37 |
+
elif age > 60 and education > 12:
|
| 38 |
+
norm_mean = 56.2
|
| 39 |
+
norm_sd = 3.4
|
| 40 |
+
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
|
| 41 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 42 |
+
else:
|
| 43 |
+
print("missing value/ wrong format")
|
| 44 |
+
|
| 45 |
+
def fas_calculator(age, education, fas):
|
| 46 |
+
if age <= 60 and education <= 12:
|
| 47 |
+
norm_mean = 42.7
|
| 48 |
+
norm_sd = 13.7
|
| 49 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
| 50 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 51 |
+
elif age <= 60 and education > 12:
|
| 52 |
+
norm_mean = 46.7
|
| 53 |
+
norm_sd = 13.7
|
| 54 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
| 55 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 56 |
+
elif age > 60 and education <= 12:
|
| 57 |
+
norm_mean = 46.9
|
| 58 |
+
norm_sd = 10.4
|
| 59 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
| 60 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 61 |
+
elif age > 60 and education > 12:
|
| 62 |
+
norm_mean = 51.6
|
| 63 |
+
norm_sd = 12.6
|
| 64 |
+
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
|
| 65 |
+
return norm_mean, norm_sd, z_score, stanine_value
|
| 66 |
+
else:
|
| 67 |
+
print("missing value/ wrong format")
|
| 68 |
+
|
| 69 |
+
def generate_graph(BNT_stanine, FAS_stanine):
|
| 70 |
+
# Create a plot
|
| 71 |
+
fig, ax = plt.subplots()
|
| 72 |
+
|
| 73 |
+
# Set axis labels and title
|
| 74 |
+
ax.set_xlabel('Stanine values')
|
| 75 |
+
ax.set_ylabel('Test')
|
| 76 |
+
|
| 77 |
+
# Set the y-axis to display the tests
|
| 78 |
+
ax.set_yticks([1, 2])
|
| 79 |
+
ax.set_yticklabels(['BNT', 'FAS'])
|
| 80 |
+
|
| 81 |
+
# Set the range of the x-axis
|
| 82 |
+
ax.set_xlim([0, 10])
|
| 83 |
+
|
| 84 |
+
# Add dots for BNT and FAS scores
|
| 85 |
+
ax.scatter(BNT_stanine, 1, s=100, label='BNT')
|
| 86 |
+
ax.scatter(FAS_stanine, 2, s=100, label='FAS')
|
| 87 |
+
|
| 88 |
+
# Add legend
|
| 89 |
+
ax.legend()
|
| 90 |
+
|
| 91 |
+
# Show the plot
|
| 92 |
+
# plt.show()
|
| 93 |
+
|
| 94 |
+
# Save the graph as a png file
|
| 95 |
+
fig.savefig('test_profile.png')
|
| 96 |
+
return 'test_profile.png'
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def create_pdf(z_score, mean, std_dev, logo_path, plot_path):
|
| 101 |
+
pdf = FPDF()
|
| 102 |
+
pdf.add_page()
|
| 103 |
+
pdf.set_xy(0, 0)
|
| 104 |
+
pdf.set_font("Arial", size=12)
|
| 105 |
+
|
| 106 |
+
# Add logos
|
| 107 |
+
x_positions = [25, 85, 145]
|
| 108 |
+
for i, logo_path in enumerate(logo_paths):
|
| 109 |
+
pdf.image(logo_path, x=x_positions[i], y=8, w=40)
|
| 110 |
+
pdf.set_xy(10, 50)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Add title and center it
|
| 114 |
+
title = "Z-Score Report"
|
| 115 |
+
pdf.set_font("Arial", style="B", size=16)
|
| 116 |
+
title_width = pdf.get_string_width(title) + 6
|
| 117 |
+
pdf.cell((210 - title_width) / 2)
|
| 118 |
+
pdf.cell(title_width, 10, title, 0, 1, "C")
|
| 119 |
+
|
| 120 |
+
# Add z-score and center it
|
| 121 |
+
pdf.set_font("Arial", size=12)
|
| 122 |
+
z_score_text = "Your z-score is: {:.2f}".format(z_score)
|
| 123 |
+
z_score_width = pdf.get_string_width(z_score_text) + 6
|
| 124 |
+
pdf.cell((210 - z_score_width) / 2)
|
| 125 |
+
pdf.cell(z_score_width, 10, z_score_text, 0, 1, "C")
|
| 126 |
+
|
| 127 |
+
# Add mean and standard deviation and center it
|
| 128 |
+
mean_std_text = "Mean: {}, Standard Deviation: {}".format(mean, std_dev)
|
| 129 |
+
mean_std_width = pdf.get_string_width(mean_std_text) + 6
|
| 130 |
+
pdf.cell((210 - mean_std_width) / 2)
|
| 131 |
+
pdf.cell(mean_std_width, 10, mean_std_text, 0, 1, "C")
|
| 132 |
+
|
| 133 |
+
# Add logo
|
| 134 |
+
pdf.image(plot_path, x=10, y=80, w=200)
|
| 135 |
+
# pdf.set_xy(10, 40)
|
| 136 |
+
|
| 137 |
+
# Add tool description and center it
|
| 138 |
+
pdf.set_xy(10, 230)
|
| 139 |
+
pdf.set_font("Arial", size=10)
|
| 140 |
+
description = "This PDF report was generated using the Z-Score Calculator Streamlit App."
|
| 141 |
+
pdf.multi_cell(0, 10, description, 0, "C")
|
| 142 |
+
|
| 143 |
+
# Add explanatory text about the collaboration between KI and KTH
|
| 144 |
+
pdf.set_xy(10, 255)
|
| 145 |
+
pdf.set_font("Arial", size=8)
|
| 146 |
+
collaboration_text = (
|
| 147 |
+
"Den här PDF:en är en del av ett samarbetsprojekt mellan Karolinska Institutet (KI) och "
|
| 148 |
+
"Kungliga Tekniska Högskolan (KTH) med målsättningen att använda artificiell intelligens (AI) och "
|
| 149 |
+
"teknik för att minska administration i sjukhusarbete. Projektet fokuserar på att utveckla och "
|
| 150 |
+
"implementera AI-baserade lösningar för att förbättra arbetsflöden, öka effektiviteten och "
|
| 151 |
+
"minska den administrativa bördan för sjukvårdspersonal. För frågor om formuläret kontakta Fredrik Sand fredrik.sand-aronsson@regionstockholm.se, för frågor om teknik kontakta Birger Moëll bmoell@kth.se."
|
| 152 |
+
)
|
| 153 |
+
line_width = 190
|
| 154 |
+
line_height = pdf.font_size_pt * 0.6
|
| 155 |
+
lines = collaboration_text.split(' ')
|
| 156 |
+
current_line = ''
|
| 157 |
+
for word in lines:
|
| 158 |
+
if pdf.get_string_width(current_line + word) < line_width:
|
| 159 |
+
current_line += word + ' '
|
| 160 |
+
else:
|
| 161 |
+
pdf.cell(line_width, line_height, current_line, 0, 1)
|
| 162 |
+
current_line = word + ' '
|
| 163 |
+
pdf.cell(line_width, line_height, current_line, 0, 1)
|
| 164 |
+
|
| 165 |
+
return pdf
|
| 166 |
+
|
| 167 |
+
def pdf_to_base64(pdf):
|
| 168 |
+
with open(pdf, "rb") as file:
|
| 169 |
+
return base64.b64encode(file.read()).decode('utf-8')
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Title and description
|
| 173 |
+
st.title("Z-Score Calculator")
|
| 174 |
+
st.write("Enter your test score, age, and education level to calculate the z-score.")
|
| 175 |
+
|
| 176 |
+
# Input fields
|
| 177 |
+
#test_score = st.number_input("Test Score", min_value=0, value=0, step=1)
|
| 178 |
+
age = st.number_input("Age", min_value=0, value=18, step=1)
|
| 179 |
+
education_level = st.number_input("Education Level in years", min_value=0, value=18, step=1)
|
| 180 |
+
isw = st.number_input("ISW", min_value=0, value=0, step=1)
|
| 181 |
+
bnt = st.number_input("BNT", min_value=0, value=0, step=1)
|
| 182 |
+
fas = st.number_input("FAS", min_value=0, value=0, step=1)
|
| 183 |
+
animal = st.number_input("Animal", min_value=0, value=0, step=1)
|
| 184 |
+
verb = st.number_input("Verb", min_value=0, value=0, step=1)
|
| 185 |
+
repetition = st.number_input("Repetition", min_value=0, value=0, step=1)
|
| 186 |
+
logicogrammatic = st.number_input("Logicogrammatic", min_value=0, value=0, step=1)
|
| 187 |
+
inference = st.number_input("Inference", min_value=0, value=0, step=1)
|
| 188 |
+
reading_speed = st.number_input("Reading Speed", min_value=0, value=0, step=1)
|
| 189 |
+
decoding_words = st.number_input("Decoding Words", min_value=0, value=0, step=1)
|
| 190 |
+
decoding_non_words = st.number_input("Decoding Non-Words", min_value=0, value=0, step=1)
|
| 191 |
+
months_backward = st.number_input("Months Backward", min_value=0, value=0, step=1)
|
| 192 |
+
pataka = st.number_input("Pataka", min_value=0, value=0, step=1)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
# add all the tests
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# Calculate mean and standard deviation based on age and education level
|
| 200 |
+
# For simplicity, we will use made-up values for mean and std_dev
|
| 201 |
+
mean = np.random.randint(50, 100)
|
| 202 |
+
std_dev = np.random.randint(10, 30)
|
| 203 |
+
|
| 204 |
+
# Calculate z-score and display result
|
| 205 |
+
if st.button("Calculate Z-Score"):
|
| 206 |
+
profile = test_profile(age, education_level, isw, bnt, fas)
|
| 207 |
+
|
| 208 |
+
# for each value in the profile, calculate the z-score
|
| 209 |
+
bnt_mean, bnt_std, z_bnt, stanine_bnt = bnt_calculator(age, education_level, bnt)
|
| 210 |
+
fas_mean, fas_std, z_fas, stanine_fas = fas_calculator(age, education_level, fas)
|
| 211 |
+
|
| 212 |
+
# z_score = calculate_z_score(test_score, mean, std_dev)
|
| 213 |
+
st.write(f"Your bnt z-score is: {z_bnt:.2f}")
|
| 214 |
+
st.write(f"Mean: {bnt_mean}, Standard Deviation: {bnt_std}")
|
| 215 |
+
|
| 216 |
+
st.write(f"Your fas z-score is: {z_fas:.2f}")
|
| 217 |
+
st.write(f"Mean: {fas_mean}, Standard Deviation: {fas_std}")
|
| 218 |
+
# Create PDF
|
| 219 |
+
# logo_path="logo.jpg"
|
| 220 |
+
|
| 221 |
+
logo_paths = ["logo.jpg", "logo2.jpg", "logo3.jpg"]
|
| 222 |
+
|
| 223 |
+
# create the plot from the dataframe
|
| 224 |
+
|
| 225 |
+
# check if education level is more than 12 years, if more than 12, set value to one, otherwise zero
|
| 226 |
+
education_level = 1 if education_level > 12 else 0
|
| 227 |
+
|
| 228 |
+
plot_path = generate_graph(stanine_bnt, stanine_fas)
|
| 229 |
+
|
| 230 |
+
# create an image from the plot and add to streamlit display
|
| 231 |
+
image = Image.open(plot_path)
|
| 232 |
+
st.image(image, caption='Stanine plot', use_column_width=True)
|
| 233 |
+
|
| 234 |
+
pdf_filename = "z_score_report.pdf"
|
| 235 |
+
pdf = create_pdf(z_bnt, bnt_mean, bnt_std, logo_paths, plot_path)
|
| 236 |
+
pdf.output(name=pdf_filename)
|
| 237 |
+
|
| 238 |
+
# Download PDF
|
| 239 |
+
with open(pdf_filename, "rb") as file:
|
| 240 |
+
base64_pdf = base64.b64encode(file.read()).decode('utf-8')
|
| 241 |
+
pdf_display = f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="{pdf_filename}">Download PDF</a>'
|
| 242 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
| 243 |
+
|
| 244 |
+
# Remove PDF file after download
|
| 245 |
+
if os.path.exists(pdf_filename):
|
| 246 |
+
os.remove(pdf_filename)
|