File size: 22,945 Bytes
582ea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a48e97
582ea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
from typing import Callable, Optional, Tuple, Union

import yaml
import torch
import torch.nn as nn
from torch.nn import functional as F

from transformers import AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
# from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.processing_utils import Unpack
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_flex_attn_available,
    logging,
    replace_return_docstrings,
)
from transformers.models.olmo2.configuration_olmo2 import Olmo2Config
from transformers.models.olmo2.modeling_olmo2 import (
    Olmo2RMSNorm,
    Olmo2Attention,
    Olmo2MLP,
    Olmo2DecoderLayer,
    Olmo2RotaryEmbedding,
    Olmo2PreTrainedModel,
    rotate_half,
    apply_rotary_pos_emb,
    repeat_kv,
    eager_attention_forward,
)


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask

from models.modules import CausalLMOutputWithPast

logger = logging.get_logger(__name__)

class MiCRoOLMo2DecoderLayer(nn.Module):
    def __init__(self, config: Olmo2Config, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.num_experts  = config.num_experts
        self.top_k        = config.num_experts_per_tok
        self.use_router   = config.use_router
        self.ablate       = config.ablate or []
        self.num_layers   = config.backbone_num_layers
        self.layer_idx    = layer_idx
        self.jitter_noise = config.jitter_noise
        self.config = config
        self.head_dim = config.hidden_size // config.num_attention_heads

        if isinstance(self.ablate, str):
            self.ablate = [self.ablate]

        # gating head
        self.gate = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size, bias=False),
            nn.Linear(self.hidden_size, self.num_experts, bias=False),
        )

        self.experts = nn.ModuleList([
            Olmo2DecoderLayer(config, layer_idx * self.num_experts + expert_idx)
            for expert_idx in range(self.num_experts)
        ])

    def forward(
        self,
        hidden_states: torch.Tensor,
        routing_weights: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # will become mandatory in v4.46
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
    
        batch_size, sequence_length, hidden_dim = hidden_states.shape

        if self.training and self.jitter_noise > 0:
            hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
        
        if self.use_router:
            router_logits = self.gate(hidden_states)
            if "logic" in self.ablate:
                router_logits[..., 0] = -torch.inf
            if "social" in self.ablate:
                router_logits[..., 1] = -torch.inf
            if "world" in self.ablate:
                router_logits[..., 2] = -torch.inf
            if "language" in self.ablate:
                router_logits[..., 3] = -torch.inf
            routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
        else:
            if len(routing_weights.shape) == 2:
                routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float()
            else:
                routing_weights = routing_weights.float()
            router_logits = routing_weights

        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9)

        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        # We'll accumulate outputs here
        final_hidden_states = torch.zeros_like(hidden_states)

        # Flatten final_hidden_states to [batch_size * seq_len, hidden_dim]
        # so we can do a 2D "index_add_" at the end of each loop.
        final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim)
    
        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)
        #^ [batch_size, seq_len, top_k, num_experts]

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_idx in range(self.num_experts):
            expert_layer: Olmo2DecoderLayer = self.experts[expert_idx]
            batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx])
        
            if not self.training and sequence_length == 1 and batch_indices.numel() == 0:
                if past_key_value is not None:
                    
                    input_shape = hidden_states.shape[:-1]
                    hidden_shape = (*input_shape, -1, self.head_dim)

                    key_states = expert_layer.self_attn.k_proj(hidden_states)
                    key_states = expert_layer.self_attn.k_norm(key_states).view(hidden_shape).transpose(1, 2)
                    value_states = expert_layer.self_attn.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)


                    cos, sin = position_embeddings
                    _, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin)
                    # sin and cos are specific to RoPE models; cache_position needed for the static cache
                    cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
                    past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs)

                continue
        
            current_hidden_states = expert_layer(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )[0]
            
            flat_idx = batch_indices * sequence_length + seq_indices
            expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1)
            current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights

            final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype))

        final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits
    
class MiCRoOLMo(Olmo2PreTrainedModel, GenerationMixin):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`]

    Args:
        config: Olmo2Config
    """

    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config: Olmo2Config):
        with open(config.config_path, 'r', encoding="utf-8") as file:
            run_config = yaml.load(file.read(), Loader=yaml.FullLoader)

        self.config: Olmo2Config = config
        self.config.torch_dtype = torch.bfloat16
        self.config.use_bfloat16 = True
        self.config._attn_implementation = "eager" # {sdpa, flash_attention_2, eager}
        self.config.use_cache = True
        self.config.backbone_num_layers = self.config.num_hidden_layers
        self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"]
        self.config.loss_type = "ForCausalLMLoss"

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.gradient_checkpointing = False
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.build_model(run_config)
    
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, value):
        self.lm_head = value

    def build_model(self, run_config):
        self.gradient_checkpointing = False
        self.config.num_experts = run_config["num-experts"]
        self.config.use_router = run_config["use-router"]
        self.config.num_experts_per_tok = run_config["top-k-experts"]
        self.config.jitter_noise = run_config["jitter-noise"]
        self.config.loss_method = run_config.get("loss", "all")

        self.run_config = run_config        
        # Qwen2 model
        self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([MiCRoOLMo2DecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
        self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
        self.rotary_emb = Olmo2RotaryEmbedding(config=self.config)
        self.norm = Olmo2RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)

        # Freeze Model
        for param in self.parameters():
            param.requires_grad = False

        # Unfreeze Modules
        if "reasoners" in run_config["trainable"]:
            print(">> Unfreezing Reasoning Modules")
            for layer in self.layers:
                layer: MiCRoOLMo2DecoderLayer
                for param in layer.experts.parameters():
                    param.requires_grad = True

        if "model" in run_config["trainable"]:
            print(">> Unfreezing Model")
            for param in self.layers.parameters():
                param.requires_grad = True

            for param in self.lm_head.parameters():
                param.requires_grad = True

            for param in self.rotary_emb.parameters():
                param.requires_grad = True

            for param in self.norm.parameters():
                param.requires_grad = True

            for param in self.embed_tokens.parameters():
                param.requires_grad = True

            for layer in self.layers:
                for param in layer.gate.parameters():
                    param.requires_grad = False


        if "experts-router" in run_config["trainable"]:
            print(">> Unfreezing Experts Router")
            for layer in self.layers:
                for param in layer.gate.parameters():
                    param.requires_grad = True

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        routing_weights: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
        if not isinstance(past_key_values, (type(None), Cache)):
            raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_routing_weights = ()

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs, router_logits = decoder_layer(
                hidden_states,
                routing_weights=routing_weights,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
                # **flash_attn_kwargs,
            )

            hidden_states = layer_outputs

            # if output_attentions:
            #     all_self_attns += (layer_outputs[1],)
                
            all_routing_weights += (router_logits,)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
    
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            routing_weights=all_routing_weights,
        )

    def load_pretrained(self, model_name):
        base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
        self.lm_head.load_state_dict(base_model.lm_head.state_dict())
        self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
        self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
        self.norm.load_state_dict(base_model.model.norm.state_dict())
        for layer_idx, layer in enumerate(self.layers):
            base_model_layer = base_model.model.layers[layer_idx].state_dict()
            for expert in layer.experts:
                expert.load_state_dict(base_model_layer)

    def _update_causal_mask(
        self,
        attention_mask: Union[torch.Tensor, "BlockMask"],
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                attention_mask = make_flex_block_causal_mask(attention_mask)
            return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype = input_tensor.dtype
        sequence_length = input_tensor.shape[1]
        if using_compilable_cache:
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu", "npu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            min_dtype = torch.finfo(dtype).min
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        cache_position: torch.Tensor,
        batch_size: int,
        **kwargs,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
                `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache,
                to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )

        return causal_mask


__all__ = ["MiCRoOLMo"]