Spaces:
Running
Running
File size: 22,945 Bytes
582ea12 9a48e97 582ea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
from typing import Callable, Optional, Tuple, Union
import yaml
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
# from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.processing_utils import Unpack
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from transformers.models.olmo2.configuration_olmo2 import Olmo2Config
from transformers.models.olmo2.modeling_olmo2 import (
Olmo2RMSNorm,
Olmo2Attention,
Olmo2MLP,
Olmo2DecoderLayer,
Olmo2RotaryEmbedding,
Olmo2PreTrainedModel,
rotate_half,
apply_rotary_pos_emb,
repeat_kv,
eager_attention_forward,
)
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from models.modules import CausalLMOutputWithPast
logger = logging.get_logger(__name__)
class MiCRoOLMo2DecoderLayer(nn.Module):
def __init__(self, config: Olmo2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.use_router = config.use_router
self.ablate = config.ablate or []
self.num_layers = config.backbone_num_layers
self.layer_idx = layer_idx
self.jitter_noise = config.jitter_noise
self.config = config
self.head_dim = config.hidden_size // config.num_attention_heads
if isinstance(self.ablate, str):
self.ablate = [self.ablate]
# gating head
self.gate = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size, bias=False),
nn.Linear(self.hidden_size, self.num_experts, bias=False),
)
self.experts = nn.ModuleList([
Olmo2DecoderLayer(config, layer_idx * self.num_experts + expert_idx)
for expert_idx in range(self.num_experts)
])
def forward(
self,
hidden_states: torch.Tensor,
routing_weights: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
if self.use_router:
router_logits = self.gate(hidden_states)
if "logic" in self.ablate:
router_logits[..., 0] = -torch.inf
if "social" in self.ablate:
router_logits[..., 1] = -torch.inf
if "world" in self.ablate:
router_logits[..., 2] = -torch.inf
if "language" in self.ablate:
router_logits[..., 3] = -torch.inf
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
else:
if len(routing_weights.shape) == 2:
routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float()
else:
routing_weights = routing_weights.float()
router_logits = routing_weights
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# We'll accumulate outputs here
final_hidden_states = torch.zeros_like(hidden_states)
# Flatten final_hidden_states to [batch_size * seq_len, hidden_dim]
# so we can do a 2D "index_add_" at the end of each loop.
final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)
#^ [batch_size, seq_len, top_k, num_experts]
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer: Olmo2DecoderLayer = self.experts[expert_idx]
batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx])
if not self.training and sequence_length == 1 and batch_indices.numel() == 0:
if past_key_value is not None:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
key_states = expert_layer.self_attn.k_proj(hidden_states)
key_states = expert_layer.self_attn.k_norm(key_states).view(hidden_shape).transpose(1, 2)
value_states = expert_layer.self_attn.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
_, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin)
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs)
continue
current_hidden_states = expert_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)[0]
flat_idx = batch_indices * sequence_length + seq_indices
expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1)
current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights
final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MiCRoOLMo(Olmo2PreTrainedModel, GenerationMixin):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`]
Args:
config: Olmo2Config
"""
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: Olmo2Config):
with open(config.config_path, 'r', encoding="utf-8") as file:
run_config = yaml.load(file.read(), Loader=yaml.FullLoader)
self.config: Olmo2Config = config
self.config.torch_dtype = torch.bfloat16
self.config.use_bfloat16 = True
self.config._attn_implementation = "eager" # {sdpa, flash_attention_2, eager}
self.config.use_cache = True
self.config.backbone_num_layers = self.config.num_hidden_layers
self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"]
self.config.loss_type = "ForCausalLMLoss"
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.gradient_checkpointing = False
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.build_model(run_config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def build_model(self, run_config):
self.gradient_checkpointing = False
self.config.num_experts = run_config["num-experts"]
self.config.use_router = run_config["use-router"]
self.config.num_experts_per_tok = run_config["top-k-experts"]
self.config.jitter_noise = run_config["jitter-noise"]
self.config.loss_method = run_config.get("loss", "all")
self.run_config = run_config
# Qwen2 model
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([MiCRoOLMo2DecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.rotary_emb = Olmo2RotaryEmbedding(config=self.config)
self.norm = Olmo2RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
# Freeze Model
for param in self.parameters():
param.requires_grad = False
# Unfreeze Modules
if "reasoners" in run_config["trainable"]:
print(">> Unfreezing Reasoning Modules")
for layer in self.layers:
layer: MiCRoOLMo2DecoderLayer
for param in layer.experts.parameters():
param.requires_grad = True
if "model" in run_config["trainable"]:
print(">> Unfreezing Model")
for param in self.layers.parameters():
param.requires_grad = True
for param in self.lm_head.parameters():
param.requires_grad = True
for param in self.rotary_emb.parameters():
param.requires_grad = True
for param in self.norm.parameters():
param.requires_grad = True
for param in self.embed_tokens.parameters():
param.requires_grad = True
for layer in self.layers:
for param in layer.gate.parameters():
param.requires_grad = False
if "experts-router" in run_config["trainable"]:
print(">> Unfreezing Experts Router")
for layer in self.layers:
for param in layer.gate.parameters():
param.requires_grad = True
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
routing_weights: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_routing_weights = ()
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs, router_logits = decoder_layer(
hidden_states,
routing_weights=routing_weights,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
# **flash_attn_kwargs,
)
hidden_states = layer_outputs
# if output_attentions:
# all_self_attns += (layer_outputs[1],)
all_routing_weights += (router_logits,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
routing_weights=all_routing_weights,
)
def load_pretrained(self, model_name):
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
self.lm_head.load_state_dict(base_model.lm_head.state_dict())
self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
self.norm.load_state_dict(base_model.model.norm.state_dict())
for layer_idx, layer in enumerate(self.layers):
base_model_layer = base_model.model.layers[layer_idx].state_dict()
for expert in layer.experts:
expert.load_state_dict(base_model_layer)
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
sequence_length = input_tensor.shape[1]
if using_compilable_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
__all__ = ["MiCRoOLMo"] |