Spaces:
Running
Running
File size: 9,165 Bytes
582ea12 3768f67 582ea12 c0742fe 582ea12 c0742fe 582ea12 4e8105c 8730f5f 582ea12 4e82a89 582ea12 8730f5f 582ea12 5f411d7 582ea12 c0742fe 582ea12 3768f67 5c65b5e 582ea12 9a48e97 582ea12 c0742fe 582ea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# router_backend.py
"""
Plug your real model routing function here.
Implement the function:
get_expert_routing(model_id: str, prompt: str) -> list[float] | dict[str, float] | tuple[float, float, float, float]
It must return 4 values (percentages) corresponding to the experts:
["Language", "Logic", "Social", "World"]
Example return formats:
- [12.5, 45.0, 22.5, 20.0]
- {"Language": 12.5, "Logic": 45.0, "Social": 22.5, "World": 20.0}
- (12.5, 45.0, 22.5, 20.0)
"""
import torch
import pathlib
import numpy as np
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from typing import Union, Dict, List, Tuple
from models.micro_olmo import MiCRoOLMo
from models.micro_llama import MiCRoLlama
from models.micro_moe_llama import MiCRoLlamaMoE
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_expert_routing(model_id: str, hf_token: str, prompt: Union[str, List[Dict[str, str]]], ablations: List[str] = None) -> Union[List[float], Dict[str, float], Tuple[float, float, float, float]]:
model, tokenizer = build_model(model_id, hf_token, ablations=ablations)
if isinstance(prompt, str):
generation, routing_weights = generate_continuation(model, tokenizer, prompt)
generation = generation[0] if type(generation) is list else generation
elif isinstance(prompt, list):
generation = None
routing_weights = get_routing_weights(model, tokenizer, [prompt])
model_routing_percentages = aggregate_routing_weights(routing_weights)[0]
print(model_routing_percentages)
if generation is not None:
print(f"Generation:\n{generation}")
return {
"Language": float(model_routing_percentages[3]),
"Logic": float(model_routing_percentages[0]),
"Social": float(model_routing_percentages[1]),
"World": float(model_routing_percentages[2]),
}, generation
def get_model_path(model_name: str) -> Tuple[str, str, AutoModelForCausalLM]:
return {
# MiCRo-Llama
"micro-llama-1b": ("bkhmsi/micro-llama-1b", "meta-llama/Llama-3.2-1B-Instruct", MiCRoLlama),
"micro-llama-3b": ("bkhmsi/micro-llama-3b", "meta-llama/Llama-3.2-3B-Instruct", MiCRoLlama),
"micro-llama-1b-dpo": ("bkhmsi/micro-llama-1b-dpo", "meta-llama/Llama-3.2-1B-Instruct", MiCRoLlama),
# MiCRo-MoE-Llama
"micro-moe-llama-1b": ("bkhmsi/micro-moe-llama-1b", "meta-llama/Llama-3.2-1B-Instruct", MiCRoLlamaMoE),
# MiCRo-OLMo
"micro-olmo": ("bkhmsi/micro-olmo-1b", "allenai/OLMo-2-0425-1B-Instruct", MiCRoOLMo),
# MiCRo-SmolLM2
"micro-smollm2-135m": ("bkhmsi/micro-smollm2-135m", "HuggingFaceTB/SmolLM2-135M-Instruct", MiCRoLlama),
"micro-smollm2-360m": ("bkhmsi/micro-smollm2-360m", "HuggingFaceTB/SmolLM2-360M-Instruct", MiCRoLlama),
# MiCRo-MoE-SmolLM2
"micro-moe-smollm2-135m": ("bkhmsi/micro-moe-smollm2-135m", "HuggingFaceTB/SmolLM2-135M-Instruct", MiCRoLlamaMoE),
"micro-moe-smollm2-360m": ("bkhmsi/micro-moe-smollm2-360m", "HuggingFaceTB/SmolLM2-360M-Instruct", MiCRoLlamaMoE),
}.get(model_name, (model_name, model_name, AutoModelForCausalLM))
def aggregate_routing_weights(routing_weights):
experts = ["Logic", "Social", "World", "Language"]
expert_token_model = np.zeros((len(experts)), dtype=int)
expert_layer_token = np.zeros((routing_weights.shape[0], len(experts)), dtype=int)
num_layers = routing_weights.shape[0]
for layer_idx in range(num_layers):
for token_idx in range(len(routing_weights[layer_idx])):
expert_idx = routing_weights[layer_idx][token_idx].argmax()
if layer_idx >= 2 and layer_idx < num_layers - 2:
expert_token_model[expert_idx] += 1
expert_layer_token[layer_idx][expert_idx] += 1
return expert_token_model, expert_layer_token
def generate_continuation(model,
tokenizer,
prompts,
max_tokens=128,
use_cache=True,
return_routing_weights=True
):
if isinstance(prompts, str):
prompts = [{"role": "user", "content": prompts}]
tokenizer.padding_side = "left"
inputs = tokenizer.apply_chat_template([
prompt for prompt in prompts
], return_tensors="pt", padding=True, add_generation_prompt=True).to(DEVICE)
attention_mask = torch.ones_like(inputs)
attention_mask[inputs == tokenizer.pad_token_id] = 0
outputs = model.generate(
input_ids=inputs,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
use_cache=use_cache,
stop_strings=["</s>","<|eot_id|>", "<|im_start|>user", "user"],
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
temperature=0,
top_p=1.0,
do_sample=False,
)
if return_routing_weights:
attention_mask = torch.ones_like(outputs)
attention_mask[outputs == tokenizer.pad_token_id] = 0
model_output = model(input_ids=outputs, attention_mask=attention_mask)
torch.cuda.empty_cache()
routing_weights = model_output.routing_weights
routing_weights = np.concatenate([
F.softmax(rw, dim=-1)[:, inputs.shape[1]:].detach().float().cpu().numpy()
for rw in routing_weights
])
else:
routing_weights = None
inputs_text = tokenizer.batch_decode(inputs, skip_special_tokens=False)
generations = []
for i, output in enumerate(outputs):
decoded_output = tokenizer.decode(output, skip_special_tokens=False)
decoded_output = decoded_output.replace(inputs_text[i], "")
decoded_output = decoded_output.replace(tokenizer.pad_token, "").strip()
decoded_output = decoded_output.replace("<|end_of_text|>", "").strip()
decoded_output = decoded_output.replace("<|endoftext|>", "").strip()
decoded_output = decoded_output.replace("<|eot_id|>", "").strip()
decoded_output = decoded_output.replace("\n<|im_start|>user", "").strip()
generations.append(decoded_output)
return (generations, routing_weights) if return_routing_weights else generations
def get_routing_weights(model, tokenizer, prompts, apply_chat_template=True):
"""
Get routing weights for the given prompts using the model.
Args:
model: The MiCRoLlama or MiCRoOLMo model.
tokenizer: The tokenizer for the model.
prompts: A string or list of dictionaries containing the prompts.
Returns:
routing_weights: A list of routing weights for each layer.
"""
tokenizer.padding_side = "left"
if apply_chat_template:
if isinstance(prompts, str):
prompts = [{"role": "user", "content": prompts}]
inputs = tokenizer.apply_chat_template([
prompt for prompt in prompts
], return_tensors="pt", padding=True).to(DEVICE)
input_without_response = tokenizer.apply_chat_template([
prompt[:-1] for prompt in prompts
], return_tensors="pt", padding=True,
).to(DEVICE)
else:
inputs = tokenizer(prompts[0] + prompts[1], return_tensors="pt", padding=True).input_ids.to(DEVICE)
input_without_response = tokenizer(prompts[0], return_tensors="pt", padding=True).input_ids.to(DEVICE)
attention_mask = torch.ones_like(inputs)
attention_mask[inputs == tokenizer.pad_token_id] = 0
model_output = model(input_ids=inputs, attention_mask=attention_mask)
routing_weights = model_output.routing_weights
routing_weights = np.stack([F.softmax(rw, dim=-1).detach().float().cpu().numpy() for rw in routing_weights], axis=0).squeeze()
offset = len(input_without_response[0])-1
routing_weights = routing_weights[:, offset:-1]
return routing_weights
def build_model(model_id: str, hf_token: str, ablations: List[str], use_cache: bool = True):
model_path, base_model, model_class = get_model_path(model_id)
model_config = AutoConfig.from_pretrained(base_model, use_auth_token=hf_token)
parent_path = pathlib.Path(__file__).parent
model_config.config_path = f"{parent_path}/configs/{model_id.replace('-', '_')}.yml"
model_config.torch_dtype = torch.bfloat16
model_config.use_bfloat16 = True
model_config._attn_implementation = "eager" # {sdpa, flash_attention_2, eager}
model_config.use_cache = use_cache
model_config.ablate = ablations
tokenizer = AutoTokenizer.from_pretrained(base_model, use_auth_token=hf_token)
tokenizer.padding_side = "left"
if "llama" in model_id:
tokenizer.pad_token_id = 128004
if "olmo" in model_id:
tokenizer.pad_token_id = 100277
tokenizer.add_special_tokens({'additional_special_tokens': ['<|assistant|>']})
elif "smollm2" in model_id:
tokenizer.pad_token_id = 2
else:
tokenizer.pad_token_id = 128004
if "olmo" in model_id:
model_config.vocab_size = len(tokenizer)
model = model_class.from_pretrained(model_path, config=model_config, low_cpu_mem_usage=True)
model.to(DEVICE)
model = model.bfloat16()
model.eval()
return model, tokenizer |