cognitive-reasoners / models /micro_llama.py
bkhmsi's picture
created micro hf space
582ea12
raw
history blame
27.2 kB
from typing import Optional, Tuple, Union, List, Callable
import logging
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
# from transformers.utils import TransformerKwargs
from transformers import LlamaConfig, AutoConfig, AutoTokenizer, AutoModelForCausalLM
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.models.llama.modeling_llama import (
LlamaRotaryEmbedding,
LlamaRMSNorm,
LlamaMLP,
LlamaDecoderLayer,
LlamaPreTrainedModel,
GenerationMixin,
apply_rotary_pos_emb,
eager_attention_forward,
)
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.cache_utils import Cache, StaticCache, DynamicCache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.processing_utils import Unpack
from transformers.utils import is_torchdynamo_compiling
from models.modules import CausalLMOutputWithPast
from transformers.modeling_layers import GradientCheckpointingLayer
logger = logging.getLogger(__name__)
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class MiCRoLlamaConfig(LlamaConfig):
model_type = "micro_llama"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_experts = kwargs.get("num_experts", 4)
self.use_router = kwargs.get("use_router", True)
self.num_experts_per_tok = kwargs.get("num_experts_per_tok", 2)
self.jitter_noise = kwargs.get("jitter_noise", 0.0)
self.loss_method = kwargs.get("loss_method", "all")
self.config_path = kwargs.get("config_path", None)
class MiCRoLlamaDecoderLayer(nn.Module):
def __init__(self, config: MiCRoLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.use_router = config.use_router
self.ablate = config.ablate
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = self.hidden_dim // config.num_attention_heads
self.gradient_checkpointing = config.gradient_checkpointing
if isinstance(self.ablate, str):
self.ablate = [self.ablate]
self.gate = nn.Sequential(
nn.Linear(self.hidden_dim, self.hidden_dim, bias=False),
nn.Linear(self.hidden_dim, self.num_experts, bias=False)
)
self.num_layers = config.backbone_num_layers
self.layer_idx = layer_idx
self.experts = nn.ModuleList([LlamaDecoderLayer(config, layer_idx * self.num_experts + expert_idx) for expert_idx in range(self.num_experts)])
self.jitter_noise = config.jitter_noise
def forward(
self,
hidden_states: torch.Tensor,
routing_weights: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
ablate: Optional[List[str]] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if ablate is not None:
self.ablate = ablate
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
if self.use_router:
router_logits = self.gate(hidden_states)
if "logic" in self.ablate:
router_logits[..., 0] = -torch.inf
if "social" in self.ablate:
router_logits[..., 1] = -torch.inf
if "world" in self.ablate:
router_logits[..., 2] = -torch.inf
if "language" in self.ablate:
router_logits[..., 3] = -torch.inf
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
else:
if len(routing_weights.shape) == 2:
routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float()
else:
routing_weights = routing_weights.float()
router_logits = routing_weights
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# We'll accumulate outputs here
final_hidden_states = torch.zeros_like(hidden_states)
# Flatten final_hidden_states to [batch_size * seq_len, hidden_dim]
# so we can do a 2D "index_add_" at the end of each loop.
final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)
#^ [batch_size, seq_len, top_k, num_experts]
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer: LlamaDecoderLayer = self.experts[expert_idx]
batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx])
if not self.training and sequence_length == 1 and batch_indices.numel() == 0:
if past_key_value is not None:
hidden_state_ln_norm = expert_layer.input_layernorm(hidden_states)
input_shape = hidden_state_ln_norm.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
# query_states = expert_layer.self_attn.q_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
key_states = expert_layer.self_attn.k_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
value_states = expert_layer.self_attn.v_proj(hidden_state_ln_norm).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
_, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin)
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs)
continue
if self.gradient_checkpointing and self.training:
current_hidden_states = self._gradient_checkpointing_func(
expert_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)[0]
else:
current_hidden_states = expert_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)[0]
flat_idx = batch_indices * sequence_length + seq_indices
expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1)
current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights
final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MiCRoLlama(LlamaPreTrainedModel, GenerationMixin):
config_class = MiCRoLlamaConfig
def __init__(self, config: MiCRoLlamaConfig):
with open(config.config_path, 'r', encoding="utf-8") as file:
run_config = yaml.load(file.read(), Loader=yaml.FullLoader)
self.config: MiCRoLlamaConfig = config
self.config.torch_dtype = torch.bfloat16
self.config.use_bfloat16 = True
self.config._attn_implementation = "flash_attention_2" # {sdpa, flash_attention_2, eager}
self.config.backbone_num_layers = self.config.num_hidden_layers
self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"]
self.config.loss_type = "ForCausalLMLoss"
super(MiCRoLlama, self).__init__(self.config)
self.build_model(run_config)
def build_model(self, run_config):
self.gradient_checkpointing = False
self.config.num_experts = run_config["num-experts"]
self.config.use_router = run_config["use-router"]
self.config.num_experts_per_tok = run_config["top-k-experts"]
print(f">> Number of Experts per Token: {self.config.num_experts_per_tok}")
self.config.jitter_noise = run_config["jitter-noise"]
self.config.loss_method = run_config.get("loss", "all")
self.config.gradient_checkpointing = run_config.get("gradient-checkpointing", False)
print(f">> Gradient Checkpointing: {self.config.gradient_checkpointing}")
self.run_config = run_config
self.padding_idx = 2 if "smollm2" in run_config["model"] else 128004
# MiCRoLlama model
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([MiCRoLlamaDecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
self.final_norm = LlamaRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
if "model" not in run_config["trainable"]:
print(">> Freezing Model Except Routing Gates")
for param in self.parameters():
param.requires_grad = False
for layer in self.layers:
layer: MiCRoLlamaDecoderLayer
for param in layer.gate.parameters():
param.requires_grad = True
if "experts-router" not in run_config["trainable"]:
print(">> Freezing Routing Gates")
for layer in self.layers:
layer: MiCRoLlamaDecoderLayer
for param in layer.gate.parameters():
param.requires_grad = False
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
experts_ablate: Optional[List[str]] = None,
routing_weights: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_routing_weights = ()
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training and False:
layer_outputs, router_logits = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
routing_weights,
causal_mask,
position_ids,
experts_ablate,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs, router_logits = decoder_layer(
hidden_states,
routing_weights=routing_weights,
attention_mask=causal_mask,
position_ids=position_ids,
ablate=experts_ablate,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_routing_weights += (router_logits,)
hidden_states = self.final_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + (past_key_values, all_hidden_states, all_self_attns, all_routing_weights) if use_cache else (logits, all_hidden_states, all_self_attns, all_routing_weights)
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
routing_weights=all_routing_weights,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def load_pretrained(self, model_name):
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
self.lm_head.load_state_dict(base_model.lm_head.state_dict())
self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
self.final_norm.load_state_dict(base_model.model.norm.state_dict())
for layer_idx, layer in enumerate(self.layers):
base_model_layer = base_model.model.layers[layer_idx].state_dict()
for expert in layer.experts:
expert.load_state_dict(base_model_layer)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
experts_ablate=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"experts_ablate": experts_ablate,
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
AutoConfig.register("micro_llama", MiCRoLlamaConfig)
AutoModelForCausalLM.register(MiCRoLlamaConfig, MiCRoLlama)