cognitive-reasoners / models /micro_moe_llama.py
bkhmsi's picture
created micro hf space
582ea12
raw
history blame
32.3 kB
from typing import Optional, Tuple, Union, List, Callable
import logging
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from transformers import LlamaConfig, AutoModelForCausalLM, AutoConfig
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.models.llama.modeling_llama import (
LlamaRotaryEmbedding,
LlamaRMSNorm,
LlamaMLP,
LlamaAttention,
LlamaForCausalLM,
LlamaPreTrainedModel,
GenerationMixin,
apply_rotary_pos_emb,
eager_attention_forward,
)
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.cache_utils import Cache, StaticCache, DynamicCache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.processing_utils import Unpack
from transformers.utils import is_torchdynamo_compiling
from transformers.activations import ACT2FN
from models.modules import CausalLMOutputWithPast
logger = logging.getLogger(__name__)
def keep_alive_zero(model):
z = 0.0
for p in model.parameters():
if p.requires_grad:
# one scalar per param to avoid heavy sums
z = z + (p.view(-1)[0] * 0.0)
return z
class MiCRoLlamaMoEConfig(LlamaConfig):
model_type = "micro_llama_moe"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_experts = kwargs.get("num_experts", 4)
self.use_router = kwargs.get("use_router", True)
self.num_experts_per_tok = kwargs.get("num_experts_per_tok", 2)
self.jitter_noise = kwargs.get("jitter_noise", 0.0)
self.loss_method = kwargs.get("loss_method", "all")
self.config_path = kwargs.get("config_path", None)
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class DummyModule(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
class LlamaSparseMiCRoMoEBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.use_router = config.use_router
self.ablate = config.ablate
# gating
self.gate = nn.Sequential(
nn.Linear(self.hidden_dim, self.hidden_dim, bias=False),
nn.Linear(self.hidden_dim, self.num_experts, bias=False)
)
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
self.dummy = DummyModule()
# Jitter parameters
self.jitter_noise = config.jitter_noise
def forward(self, hidden_states: torch.Tensor, routing_weights: Optional[torch.Tensor] = None) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
if self.use_router:
router_logits = self.gate(hidden_states)
if "logic" in self.ablate:
router_logits[..., 0] = -torch.inf
if "social" in self.ablate:
router_logits[..., 1] = -torch.inf
if "world" in self.ablate:
router_logits[..., 2] = -torch.inf
if "language" in self.ablate:
router_logits[..., 3] = -torch.inf
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
else:
routing_weights = routing_weights.reshape(-1, 4).float()
router_logits = routing_weights
# router_logits: (batch * sequence_length, n_experts)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
H_up = self.experts[0].up_proj.out_features
Y_up = hidden_states.new_zeros((batch_size, sequence_length, self.num_experts, H_up))
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hitted:
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
# --- Hook to capture up-proj output BEFORE nonlinearity ---
captured_up = []
def _up_hook(m, inp, out):
# out shape: [N_e, H_up]
captured_up.append(out.detach())
h = expert_layer.up_proj.register_forward_hook(_up_hook)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
h.remove()
# Scatter captured up-proj per-token into Y_up[b, t, expert, :]
if captured_up:
up = captured_up[-1] # [N_e, H_up]
b_idx = top_x // sequence_length
t_idx = top_x % sequence_length
# Y_up[b,t,e,:] = up[n,:]
Y_up[b_idx, t_idx, expert_idx, :] = up
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
self.dummy(Y_up)
return final_hidden_states, router_logits
class LlamaMiCRoMoEDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: MiCRoLlamaMoEConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx)
self.block_sparse_moe = LlamaSparseMiCRoMoEBlock(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
routing_weights: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[tuple[torch.Tensor]] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states, routing_weights)
hidden_states = residual + hidden_states
return hidden_states, router_logits
class MiCRoLlamaMoE(LlamaPreTrainedModel, GenerationMixin):
config_class = MiCRoLlamaMoEConfig
def __init__(self, config):
with open(config.config_path, 'r', encoding="utf-8") as file:
run_config = yaml.load(file.read(), Loader=yaml.FullLoader)
self.config: MiCRoLlamaMoEConfig = config
self.config.torch_dtype = torch.bfloat16
self.config.use_bfloat16 = True
self.config._attn_implementation = "flash_attention_2" # {sdpa, flash_attention_2, eager}
self.config.use_cache = True
self.config.backbone_num_layers = self.config.num_hidden_layers
self.config.num_hidden_layers = self.config.num_hidden_layers
self.config.loss_type = "ForCausalLMLoss"
super(MiCRoLlamaMoE, self).__init__(self.config)
self.build_model(run_config)
def build_model(self, run_config):
self.config.num_experts = run_config["num-experts"]
self.config.use_router = run_config["use-router"]
self.config.num_experts_per_tok = run_config["top-k-experts"]
print(f">> Top-K Experts Per Token: {self.config.num_experts_per_tok}")
self.config.jitter_noise = run_config["jitter-noise"]
self.config.loss_method = run_config.get("loss", "all")
self.router_aux_loss_coef = run_config["router-aux-loss-coef"]
self.use_load_balancing = run_config.get("use-load-balancing", False)
self.config.gradient_checkpointing = run_config.get("gradient-checkpointing", False)
self.gradient_checkpointing = self.config.gradient_checkpointing
print(f">> Gradient Checkpointing: {self.config.gradient_checkpointing}")
self.run_config = run_config
self.padding_idx = 2 if "smollm2" in run_config["model"] else 128004
# LlamaMoE model
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([LlamaMiCRoMoEDecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
self.final_norm = LlamaRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
if "model" not in run_config["trainable"]:
print(">> Freezing Model Except Experts + Routing Gates")
for param in self.parameters():
param.requires_grad = False
for layer in self.layers:
layer: LlamaMiCRoMoEDecoderLayer
for param in layer.block_sparse_moe.parameters():
param.requires_grad = True
if "experts" not in run_config["trainable"]:
print(">> Freezing Experts")
for layer in self.layers:
layer: LlamaMiCRoMoEDecoderLayer
for param in layer.block_sparse_moe.experts.parameters():
param.requires_grad = False
if "experts-router" not in run_config["trainable"]:
print(">> Freezing Routing Gates")
for layer in self.layers:
layer: LlamaMiCRoMoEDecoderLayer
for param in layer.block_sparse_moe.gate.parameters():
param.requires_grad = False
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
experts_ablate: Optional[List[str]] = None,
routing_weights: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_routing_weights = ()
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs, router_logits = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
position_embeddings,
routing_weights,
causal_mask,
position_ids,
past_key_values,
cache_position,
)
else:
layer_outputs, router_logits = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
routing_weights=routing_weights,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = layer_outputs
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_routing_weights += (router_logits,)
hidden_states = self.final_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
loss += keep_alive_zero(self)
aux_loss = None
if self.use_load_balancing:
aux_loss = load_balancing_loss_func(
all_routing_weights,
self.config.num_experts,
self.config.num_experts_per_tok,
attention_mask,
)
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + (past_key_values, all_hidden_states, all_self_attns, all_routing_weights) if use_cache else (logits, all_hidden_states, all_self_attns, all_routing_weights)
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
routing_weights=all_routing_weights,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def load_pretrained(self, model_name):
base_model: LlamaForCausalLM = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
self.lm_head.load_state_dict(base_model.lm_head.state_dict())
self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
self.final_norm.load_state_dict(base_model.model.norm.state_dict())
for layer_idx, layer in enumerate(self.layers):
attn_layer = base_model.model.layers[layer_idx].self_attn.state_dict()
layer.self_attn.load_state_dict(attn_layer)
input_layernorm = base_model.model.layers[layer_idx].input_layernorm.state_dict()
layer.input_layernorm.load_state_dict(input_layernorm)
post_attention_layernorm = base_model.model.layers[layer_idx].post_attention_layernorm.state_dict()
layer.post_attention_layernorm.load_state_dict(post_attention_layernorm)
mlp_model_layer = base_model.model.layers[layer_idx].mlp.state_dict()
for expert in layer.block_sparse_moe.experts:
expert.load_state_dict(mlp_model_layer)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
experts_ablate=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"experts_ablate": experts_ablate,
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
AutoConfig.register("micro_llama_moe", MiCRoLlamaMoEConfig)
AutoModelForCausalLM.register(MiCRoLlamaMoEConfig, MiCRoLlamaMoE)