Spaces:
Running
Running
| from typing import Optional, Tuple, Union, List, Callable | |
| import logging | |
| import yaml | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.distributed as dist | |
| from transformers import LlamaConfig, AutoModelForCausalLM, AutoConfig | |
| from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
| from transformers.models.llama.modeling_llama import ( | |
| LlamaRotaryEmbedding, | |
| LlamaRMSNorm, | |
| LlamaMLP, | |
| LlamaAttention, | |
| LlamaForCausalLM, | |
| LlamaPreTrainedModel, | |
| GenerationMixin, | |
| apply_rotary_pos_emb, | |
| eager_attention_forward, | |
| ) | |
| from transformers.modeling_layers import GradientCheckpointingLayer | |
| from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS | |
| from transformers.cache_utils import Cache, StaticCache, DynamicCache | |
| from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | |
| from transformers.processing_utils import Unpack | |
| from transformers.utils import is_torchdynamo_compiling | |
| from transformers.activations import ACT2FN | |
| from models.modules import CausalLMOutputWithPast | |
| logger = logging.getLogger(__name__) | |
| def keep_alive_zero(model): | |
| z = 0.0 | |
| for p in model.parameters(): | |
| if p.requires_grad: | |
| # one scalar per param to avoid heavy sums | |
| z = z + (p.view(-1)[0] * 0.0) | |
| return z | |
| class MiCRoLlamaMoEConfig(LlamaConfig): | |
| model_type = "micro_llama_moe" | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.num_experts = kwargs.get("num_experts", 4) | |
| self.use_router = kwargs.get("use_router", True) | |
| self.num_experts_per_tok = kwargs.get("num_experts_per_tok", 2) | |
| self.jitter_noise = kwargs.get("jitter_noise", 0.0) | |
| self.loss_method = kwargs.get("loss_method", "all") | |
| self.config_path = kwargs.get("config_path", None) | |
| def _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask: torch.Tensor, | |
| sequence_length: int, | |
| target_length: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| min_dtype: float, | |
| cache_position: torch.Tensor, | |
| batch_size: int, | |
| ): | |
| """ | |
| Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
| `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
| Args: | |
| attention_mask (`torch.Tensor`): | |
| A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
| sequence_length (`int`): | |
| The sequence length being processed. | |
| target_length (`int`): | |
| The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
| dtype (`torch.dtype`): | |
| The dtype to use for the 4D attention mask. | |
| device (`torch.device`): | |
| The device to plcae the 4D attention mask on. | |
| min_dtype (`float`): | |
| The minimum value representable with the dtype `dtype`. | |
| cache_position (`torch.Tensor`): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| batch_size (`torch.Tensor`): | |
| Batch size. | |
| """ | |
| if attention_mask is not None and attention_mask.dim() == 4: | |
| # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
| causal_mask = attention_mask | |
| else: | |
| causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
| if sequence_length != 1: | |
| causal_mask = torch.triu(causal_mask, diagonal=1) | |
| causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
| causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
| if attention_mask is not None: | |
| causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
| padding_mask = padding_mask == 0 | |
| causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
| padding_mask, min_dtype | |
| ) | |
| return causal_mask | |
| class DummyModule(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x | |
| class LlamaSparseMiCRoMoEBlock(nn.Module): | |
| """ | |
| This implementation is | |
| strictly equivalent to standard MoE with full capacity (no | |
| dropped tokens). It's faster since it formulates MoE operations | |
| in terms of block-sparse operations to accommodate imbalanced | |
| assignments of tokens to experts, whereas standard MoE either | |
| (1) drop tokens at the cost of reduced performance or (2) set | |
| capacity factor to number of experts and thus waste computation | |
| and memory on padding. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_dim = config.hidden_size | |
| self.ffn_dim = config.intermediate_size | |
| self.num_experts = config.num_experts | |
| self.top_k = config.num_experts_per_tok | |
| self.use_router = config.use_router | |
| self.ablate = config.ablate | |
| # gating | |
| self.gate = nn.Sequential( | |
| nn.Linear(self.hidden_dim, self.hidden_dim, bias=False), | |
| nn.Linear(self.hidden_dim, self.num_experts, bias=False) | |
| ) | |
| self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)]) | |
| self.dummy = DummyModule() | |
| # Jitter parameters | |
| self.jitter_noise = config.jitter_noise | |
| def forward(self, hidden_states: torch.Tensor, routing_weights: Optional[torch.Tensor] = None) -> torch.Tensor: | |
| """ """ | |
| batch_size, sequence_length, hidden_dim = hidden_states.shape | |
| if self.training and self.jitter_noise > 0: | |
| hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) | |
| hidden_states = hidden_states.view(-1, hidden_dim) | |
| if self.use_router: | |
| router_logits = self.gate(hidden_states) | |
| if "logic" in self.ablate: | |
| router_logits[..., 0] = -torch.inf | |
| if "social" in self.ablate: | |
| router_logits[..., 1] = -torch.inf | |
| if "world" in self.ablate: | |
| router_logits[..., 2] = -torch.inf | |
| if "language" in self.ablate: | |
| router_logits[..., 3] = -torch.inf | |
| routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float) | |
| else: | |
| routing_weights = routing_weights.reshape(-1, 4).float() | |
| router_logits = routing_weights | |
| # router_logits: (batch * sequence_length, n_experts) | |
| routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | |
| routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | |
| # we cast back to the input dtype | |
| routing_weights = routing_weights.to(hidden_states.dtype) | |
| final_hidden_states = torch.zeros( | |
| (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | |
| ) | |
| H_up = self.experts[0].up_proj.out_features | |
| Y_up = hidden_states.new_zeros((batch_size, sequence_length, self.num_experts, H_up)) | |
| # One hot encode the selected experts to create an expert mask | |
| # this will be used to easily index which expert is going to be sollicitated | |
| expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | |
| expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() | |
| for expert_idx in expert_hitted: | |
| expert_layer = self.experts[expert_idx] | |
| idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0)) | |
| # Index the correct hidden states and compute the expert hidden state for | |
| # the current expert. We need to make sure to multiply the output hidden | |
| # states by `routing_weights` on the corresponding tokens (top-1 and top-2) | |
| current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | |
| # --- Hook to capture up-proj output BEFORE nonlinearity --- | |
| captured_up = [] | |
| def _up_hook(m, inp, out): | |
| # out shape: [N_e, H_up] | |
| captured_up.append(out.detach()) | |
| h = expert_layer.up_proj.register_forward_hook(_up_hook) | |
| current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | |
| h.remove() | |
| # Scatter captured up-proj per-token into Y_up[b, t, expert, :] | |
| if captured_up: | |
| up = captured_up[-1] # [N_e, H_up] | |
| b_idx = top_x // sequence_length | |
| t_idx = top_x % sequence_length | |
| # Y_up[b,t,e,:] = up[n,:] | |
| Y_up[b_idx, t_idx, expert_idx, :] = up | |
| # However `index_add_` only support torch tensors for indexing so we'll use | |
| # the `top_x` tensor here. | |
| final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | |
| final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | |
| self.dummy(Y_up) | |
| return final_hidden_states, router_logits | |
| class LlamaMiCRoMoEDecoderLayer(GradientCheckpointingLayer): | |
| def __init__(self, config: MiCRoLlamaMoEConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx) | |
| self.block_sparse_moe = LlamaSparseMiCRoMoEBlock(config) | |
| self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| position_embeddings: tuple[torch.Tensor, torch.Tensor], | |
| routing_weights: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[tuple[torch.Tensor]] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs: Unpack[FlashAttentionKwargs], | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, _ = self.self_attn( | |
| hidden_states=hidden_states, | |
| position_embeddings=position_embeddings, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| cache_position=cache_position, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states, router_logits = self.block_sparse_moe(hidden_states, routing_weights) | |
| hidden_states = residual + hidden_states | |
| return hidden_states, router_logits | |
| class MiCRoLlamaMoE(LlamaPreTrainedModel, GenerationMixin): | |
| config_class = MiCRoLlamaMoEConfig | |
| def __init__(self, config): | |
| with open(config.config_path, 'r', encoding="utf-8") as file: | |
| run_config = yaml.load(file.read(), Loader=yaml.FullLoader) | |
| self.config: MiCRoLlamaMoEConfig = config | |
| self.config.torch_dtype = torch.bfloat16 | |
| self.config.use_bfloat16 = True | |
| self.config._attn_implementation = "flash_attention_2" # {sdpa, flash_attention_2, eager} | |
| self.config.use_cache = True | |
| self.config.backbone_num_layers = self.config.num_hidden_layers | |
| self.config.num_hidden_layers = self.config.num_hidden_layers | |
| self.config.loss_type = "ForCausalLMLoss" | |
| super(MiCRoLlamaMoE, self).__init__(self.config) | |
| self.build_model(run_config) | |
| def build_model(self, run_config): | |
| self.config.num_experts = run_config["num-experts"] | |
| self.config.use_router = run_config["use-router"] | |
| self.config.num_experts_per_tok = run_config["top-k-experts"] | |
| print(f">> Top-K Experts Per Token: {self.config.num_experts_per_tok}") | |
| self.config.jitter_noise = run_config["jitter-noise"] | |
| self.config.loss_method = run_config.get("loss", "all") | |
| self.router_aux_loss_coef = run_config["router-aux-loss-coef"] | |
| self.use_load_balancing = run_config.get("use-load-balancing", False) | |
| self.config.gradient_checkpointing = run_config.get("gradient-checkpointing", False) | |
| self.gradient_checkpointing = self.config.gradient_checkpointing | |
| print(f">> Gradient Checkpointing: {self.config.gradient_checkpointing}") | |
| self.run_config = run_config | |
| self.padding_idx = 2 if "smollm2" in run_config["model"] else 128004 | |
| # LlamaMoE model | |
| self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList([LlamaMiCRoMoEDecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)]) | |
| self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) | |
| self.rotary_emb = LlamaRotaryEmbedding(config=self.config) | |
| self.final_norm = LlamaRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
| if "model" not in run_config["trainable"]: | |
| print(">> Freezing Model Except Experts + Routing Gates") | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| for layer in self.layers: | |
| layer: LlamaMiCRoMoEDecoderLayer | |
| for param in layer.block_sparse_moe.parameters(): | |
| param.requires_grad = True | |
| if "experts" not in run_config["trainable"]: | |
| print(">> Freezing Experts") | |
| for layer in self.layers: | |
| layer: LlamaMiCRoMoEDecoderLayer | |
| for param in layer.block_sparse_moe.experts.parameters(): | |
| param.requires_grad = False | |
| if "experts-router" not in run_config["trainable"]: | |
| print(">> Freezing Routing Gates") | |
| for layer in self.layers: | |
| layer: LlamaMiCRoMoEDecoderLayer | |
| for param in layer.block_sparse_moe.gate.parameters(): | |
| param.requires_grad = False | |
| def forward(self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| experts_ablate: Optional[List[str]] = None, | |
| routing_weights: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| logits_to_keep: Union[int, torch.Tensor] = 0, | |
| **kwargs: Unpack[FlashAttentionKwargs], | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
| if self.gradient_checkpointing and self.training and use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| if use_cache and past_key_values is None: | |
| past_key_values = DynamicCache() | |
| if cache_position is None: | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask( | |
| attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
| ) | |
| hidden_states = inputs_embeds | |
| # create position embeddings to be shared across the decoder layers | |
| position_embeddings = self.rotary_emb(hidden_states, position_ids) | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| all_routing_weights = () | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs, router_logits = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| position_embeddings, | |
| routing_weights, | |
| causal_mask, | |
| position_ids, | |
| past_key_values, | |
| cache_position, | |
| ) | |
| else: | |
| layer_outputs, router_logits = decoder_layer( | |
| hidden_states, | |
| position_embeddings=position_embeddings, | |
| routing_weights=routing_weights, | |
| attention_mask=causal_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| **kwargs, | |
| ) | |
| hidden_states = layer_outputs | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| all_routing_weights += (router_logits,) | |
| hidden_states = self.final_norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| # Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
| slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
| logits = self.lm_head(hidden_states[:, slice_indices, :]) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) | |
| loss += keep_alive_zero(self) | |
| aux_loss = None | |
| if self.use_load_balancing: | |
| aux_loss = load_balancing_loss_func( | |
| all_routing_weights, | |
| self.config.num_experts, | |
| self.config.num_experts_per_tok, | |
| attention_mask, | |
| ) | |
| loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device | |
| if not return_dict: | |
| output = (logits,) + (past_key_values, all_hidden_states, all_self_attns, all_routing_weights) if use_cache else (logits, all_hidden_states, all_self_attns, all_routing_weights) | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=past_key_values if use_cache else None, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| routing_weights=all_routing_weights, | |
| ) | |
| def _update_causal_mask( | |
| self, | |
| attention_mask: torch.Tensor, | |
| input_tensor: torch.Tensor, | |
| cache_position: torch.Tensor, | |
| past_key_values: Cache, | |
| output_attentions: bool, | |
| ): | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
| # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
| # to infer the attention mask. | |
| past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
| using_static_cache = isinstance(past_key_values, StaticCache) | |
| # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
| if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
| if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
| attention_mask, | |
| inputs_embeds=input_tensor, | |
| past_key_values_length=past_seen_tokens, | |
| is_training=self.training, | |
| ): | |
| return None | |
| dtype, device = input_tensor.dtype, input_tensor.device | |
| min_dtype = torch.finfo(dtype).min | |
| sequence_length = input_tensor.shape[1] | |
| if using_static_cache: | |
| target_length = past_key_values.get_max_length() | |
| else: | |
| target_length = ( | |
| attention_mask.shape[-1] | |
| if isinstance(attention_mask, torch.Tensor) | |
| else past_seen_tokens + sequence_length + 1 | |
| ) | |
| # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
| causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=target_length, | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=input_tensor.shape[0], | |
| ) | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and attention_mask is not None | |
| and attention_mask.device.type == "cuda" | |
| and not output_attentions | |
| ): | |
| # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
| # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
| # Details: https://github.com/pytorch/pytorch/issues/110213 | |
| causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
| return causal_mask | |
| def load_pretrained(self, model_name): | |
| base_model: LlamaForCausalLM = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| self.lm_head.load_state_dict(base_model.lm_head.state_dict()) | |
| self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict()) | |
| self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict()) | |
| self.final_norm.load_state_dict(base_model.model.norm.state_dict()) | |
| for layer_idx, layer in enumerate(self.layers): | |
| attn_layer = base_model.model.layers[layer_idx].self_attn.state_dict() | |
| layer.self_attn.load_state_dict(attn_layer) | |
| input_layernorm = base_model.model.layers[layer_idx].input_layernorm.state_dict() | |
| layer.input_layernorm.load_state_dict(input_layernorm) | |
| post_attention_layernorm = base_model.model.layers[layer_idx].post_attention_layernorm.state_dict() | |
| layer.post_attention_layernorm.load_state_dict(post_attention_layernorm) | |
| mlp_model_layer = base_model.model.layers[layer_idx].mlp.state_dict() | |
| for expert in layer.block_sparse_moe.experts: | |
| expert.load_state_dict(mlp_model_layer) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| inputs_embeds=None, | |
| cache_position=None, | |
| position_ids=None, | |
| experts_ablate=None, | |
| use_cache=True, | |
| num_logits_to_keep=None, | |
| **kwargs, | |
| ): | |
| # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
| # Exception 1: when passing input_embeds, input_ids may be missing entries | |
| # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
| if past_key_values is not None: | |
| if inputs_embeds is not None: # Exception 1 | |
| input_ids = input_ids[:, -cache_position.shape[0] :] | |
| elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
| input_ids = input_ids[:, cache_position] | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. | |
| position_ids = position_ids.clone(memory_format=torch.contiguous_format) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and cache_position[0] == 0: | |
| model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} | |
| else: | |
| # The clone here is for the same reason as for `position_ids`. | |
| model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} | |
| if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
| if model_inputs["inputs_embeds"] is not None: | |
| batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape | |
| device = model_inputs["inputs_embeds"].device | |
| else: | |
| batch_size, sequence_length = model_inputs["input_ids"].shape | |
| device = model_inputs["input_ids"].device | |
| dtype = self.lm_head.weight.dtype | |
| min_dtype = torch.finfo(dtype).min | |
| attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
| attention_mask, | |
| sequence_length=sequence_length, | |
| target_length=past_key_values.get_max_length(), | |
| dtype=dtype, | |
| device=device, | |
| min_dtype=min_dtype, | |
| cache_position=cache_position, | |
| batch_size=batch_size, | |
| ) | |
| if num_logits_to_keep is not None: | |
| model_inputs["num_logits_to_keep"] = num_logits_to_keep | |
| model_inputs.update( | |
| { | |
| "experts_ablate": experts_ablate, | |
| "position_ids": position_ids, | |
| "cache_position": cache_position, | |
| "past_key_values": past_key_values, | |
| "use_cache": use_cache, | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def load_balancing_loss_func( | |
| gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], | |
| num_experts: Optional[int] = None, | |
| top_k=2, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| ) -> Union[torch.Tensor, int]: | |
| r""" | |
| Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
| See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss | |
| function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
| experts is too unbalanced. | |
| Args: | |
| gate_logits: | |
| Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | |
| shape [batch_size X sequence_length, num_experts]. | |
| num_experts: | |
| Number of experts | |
| top_k: | |
| The number of experts to route per-token, can be also interpreted as the `top-k` routing | |
| parameter. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| The attention_mask used in forward function | |
| shape [batch_size X sequence_length] if not None. | |
| Returns: | |
| The auxiliary loss. | |
| """ | |
| if gate_logits is None or not isinstance(gate_logits, tuple): | |
| return 0 | |
| if isinstance(gate_logits, tuple): | |
| compute_device = gate_logits[0].device | |
| concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | |
| routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | |
| _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | |
| expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
| if attention_mask is None: | |
| # Compute the percentage of tokens routed to each experts | |
| tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | |
| # Compute the average probability of routing to these experts | |
| router_prob_per_expert = torch.mean(routing_weights, dim=0) | |
| else: | |
| batch_size, sequence_length = attention_mask.shape | |
| num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | |
| # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask | |
| expert_attention_mask = ( | |
| attention_mask[None, :, :, None, None] | |
| .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | |
| .reshape(-1, top_k, num_experts) | |
| .to(compute_device) | |
| ) | |
| # Compute the percentage of tokens routed to each experts | |
| tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | |
| expert_attention_mask, dim=0 | |
| ) | |
| # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert | |
| router_per_expert_attention_mask = ( | |
| attention_mask[None, :, :, None] | |
| .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | |
| .reshape(-1, num_experts) | |
| .to(compute_device) | |
| ) | |
| # Compute the average probability of routing to these experts | |
| router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | |
| router_per_expert_attention_mask, dim=0 | |
| ) | |
| overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | |
| return overall_loss * num_experts | |
| AutoConfig.register("micro_llama_moe", MiCRoLlamaMoEConfig) | |
| AutoModelForCausalLM.register(MiCRoLlamaMoEConfig, MiCRoLlamaMoE) |