cognitive-reasoners / models /micro_olmo.py
bkhmsi's picture
created micro hf space
582ea12
raw
history blame
23 kB
from typing import Callable, Optional, Tuple, Union
import yaml
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
# from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.processing_utils import Unpack
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from transformers.models.olmo2.configuration_olmo2 import Olmo2Config
from transformers.models.olmo2.modeling_olmo2 import (
Olmo2RMSNorm,
Olmo2Attention,
Olmo2MLP,
Olmo2DecoderLayer,
Olmo2RotaryEmbedding,
Olmo2PreTrainedModel,
rotate_half,
apply_rotary_pos_emb,
repeat_kv,
eager_attention_forward,
)
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from models.modules import CausalLMOutputWithPast
logger = logging.get_logger(__name__)
class MiCRoOLMo2DecoderLayer(nn.Module):
def __init__(self, config: Olmo2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.use_router = config.use_router
self.ablate = config.ablate or []
self.num_layers = config.backbone_num_layers
self.layer_idx = layer_idx
self.jitter_noise = config.jitter_noise
self.config = config
self.head_dim = config.hidden_size // config.num_attention_heads
if isinstance(self.ablate, str):
self.ablate = [self.ablate]
# gating head
self.gate = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size, bias=False),
nn.Linear(self.hidden_size, self.num_experts, bias=False),
)
self.experts = nn.ModuleList([
Olmo2DecoderLayer(config, layer_idx * self.num_experts + expert_idx)
for expert_idx in range(self.num_experts)
])
def forward(
self,
hidden_states: torch.Tensor,
routing_weights: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
if self.use_router:
router_logits = self.gate(hidden_states)
if "logic" in self.ablate:
router_logits[..., 0] = -torch.inf
if "social" in self.ablate:
router_logits[..., 1] = -torch.inf
if "world" in self.ablate:
router_logits[..., 2] = -torch.inf
if "language" in self.ablate:
router_logits[..., 3] = -torch.inf
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
else:
if len(routing_weights.shape) == 2:
routing_weights = routing_weights.unsqueeze(1).tile((1,sequence_length,1)).float()
else:
routing_weights = routing_weights.float()
router_logits = routing_weights
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= (routing_weights.sum(dim=-1, keepdim=True) + 1e-9)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# We'll accumulate outputs here
final_hidden_states = torch.zeros_like(hidden_states)
# Flatten final_hidden_states to [batch_size * seq_len, hidden_dim]
# so we can do a 2D "index_add_" at the end of each loop.
final_hidden_states_2d = final_hidden_states.view(-1, hidden_dim)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)
#^ [batch_size, seq_len, top_k, num_experts]
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer: Olmo2DecoderLayer = self.experts[expert_idx]
batch_indices, seq_indices, top_k_indices = torch.where(expert_mask[..., expert_idx])
if not self.training and sequence_length == 1 and batch_indices.numel() == 0:
if past_key_value is not None:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
key_states = expert_layer.self_attn.k_proj(hidden_states)
key_states = expert_layer.self_attn.k_norm(key_states).view(hidden_shape).transpose(1, 2)
value_states = expert_layer.self_attn.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
_, key_states = apply_rotary_pos_emb(key_states, key_states, cos, sin)
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
past_key_value.update(key_states, value_states, self.layer_idx * self.num_experts + expert_idx, cache_kwargs)
continue
current_hidden_states = expert_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)[0]
flat_idx = batch_indices * sequence_length + seq_indices
expert_weights = routing_weights[batch_indices, seq_indices, top_k_indices].unsqueeze(-1)
current_hidden_states = current_hidden_states[batch_indices, seq_indices] * expert_weights
final_hidden_states_2d.index_add_(0, flat_idx, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states_2d.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MiCRoOLMo(Olmo2PreTrainedModel, GenerationMixin):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`]
Args:
config: Olmo2Config
"""
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: Olmo2Config):
with open(config.config_path, 'r', encoding="utf-8") as file:
run_config = yaml.load(file.read(), Loader=yaml.FullLoader)
self.config: Olmo2Config = config
self.config.torch_dtype = torch.bfloat16
self.config.use_bfloat16 = True
self.config._attn_implementation = "flash_attention_2" # {sdpa, flash_attention_2, eager}
self.config.use_cache = True
self.config.backbone_num_layers = self.config.num_hidden_layers
self.config.num_hidden_layers = self.config.num_hidden_layers * run_config["num-experts"]
self.config.loss_type = "ForCausalLMLoss"
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.gradient_checkpointing = False
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.build_model(run_config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def build_model(self, run_config):
self.gradient_checkpointing = False
self.config.num_experts = run_config["num-experts"]
self.config.use_router = run_config["use-router"]
self.config.num_experts_per_tok = run_config["top-k-experts"]
self.config.jitter_noise = run_config["jitter-noise"]
self.config.loss_method = run_config.get("loss", "all")
self.run_config = run_config
# Qwen2 model
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([MiCRoOLMo2DecoderLayer(self.config, layer_idx) for layer_idx in range(self.config.backbone_num_layers)])
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.rotary_emb = Olmo2RotaryEmbedding(config=self.config)
self.norm = Olmo2RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
# Freeze Model
for param in self.parameters():
param.requires_grad = False
# Unfreeze Modules
if "reasoners" in run_config["trainable"]:
print(">> Unfreezing Reasoning Modules")
for layer in self.layers:
layer: MiCRoOLMo2DecoderLayer
for param in layer.experts.parameters():
param.requires_grad = True
if "model" in run_config["trainable"]:
print(">> Unfreezing Model")
for param in self.layers.parameters():
param.requires_grad = True
for param in self.lm_head.parameters():
param.requires_grad = True
for param in self.rotary_emb.parameters():
param.requires_grad = True
for param in self.norm.parameters():
param.requires_grad = True
for param in self.embed_tokens.parameters():
param.requires_grad = True
for layer in self.layers:
for param in layer.gate.parameters():
param.requires_grad = False
if "experts-router" in run_config["trainable"]:
print(">> Unfreezing Experts Router")
for layer in self.layers:
for param in layer.gate.parameters():
param.requires_grad = True
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
routing_weights: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_routing_weights = ()
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs, router_logits = decoder_layer(
hidden_states,
routing_weights=routing_weights,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
# **flash_attn_kwargs,
)
hidden_states = layer_outputs
# if output_attentions:
# all_self_attns += (layer_outputs[1],)
all_routing_weights += (router_logits,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
routing_weights=all_routing_weights,
)
def load_pretrained(self, model_name):
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
self.lm_head.load_state_dict(base_model.lm_head.state_dict())
self.embed_tokens.load_state_dict(base_model.get_input_embeddings().state_dict())
self.rotary_emb.load_state_dict(base_model.model.rotary_emb.state_dict())
self.norm.load_state_dict(base_model.model.norm.state_dict())
for layer_idx, layer in enumerate(self.layers):
base_model_layer = base_model.model.layers[layer_idx].state_dict()
for expert in layer.experts:
expert.load_state_dict(base_model_layer)
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
sequence_length = input_tensor.shape[1]
if using_compilable_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
__all__ = ["MiCRoOLMo"]