Spaces:
Runtime error
Runtime error
Commit
·
a2b6d64
1
Parent(s):
3a8bfcd
fixing image loading
Browse files
main.py
CHANGED
|
@@ -1,17 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, Query
|
| 2 |
-
from
|
| 3 |
from qwen_vl_utils import process_vision_info
|
| 4 |
-
import
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
|
| 8 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 9 |
-
min_pixels = 256*28*28
|
| 10 |
-
max_pixels = 1280*28*28
|
| 11 |
processor = AutoProcessor.from_pretrained(
|
| 12 |
-
checkpoint,
|
| 13 |
-
min_pixels=min_pixels,
|
| 14 |
-
max_pixels=max_pixels
|
| 15 |
)
|
| 16 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
checkpoint,
|
|
@@ -20,17 +22,64 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 20 |
# attn_implementation="flash_attention_2",
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
@app.get("/")
|
| 24 |
def read_root():
|
| 25 |
return {"message": "API is live. Use the /predict endpoint."}
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
@app.get("/predict")
|
| 28 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
|
|
|
|
|
|
|
|
|
| 29 |
messages = [
|
| 30 |
-
{
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
]
|
| 33 |
-
text = processor.apply_chat_template(
|
|
|
|
|
|
|
| 34 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 35 |
inputs = processor(
|
| 36 |
text=[text],
|
|
@@ -41,8 +90,13 @@ def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
|
| 41 |
).to(model.device)
|
| 42 |
with torch.no_grad():
|
| 43 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 44 |
-
generated_ids_trimmed = [
|
|
|
|
|
|
|
|
|
|
| 45 |
output_texts = processor.batch_decode(
|
| 46 |
-
generated_ids_trimmed,
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
return {"response": output_texts[0]}
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
from fastapi import FastAPI, Query
|
| 6 |
+
from PIL import Image
|
| 7 |
from qwen_vl_utils import process_vision_info
|
| 8 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 13 |
+
min_pixels = 256 * 28 * 28
|
| 14 |
+
max_pixels = 1280 * 28 * 28
|
| 15 |
processor = AutoProcessor.from_pretrained(
|
| 16 |
+
checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 19 |
checkpoint,
|
|
|
|
| 22 |
# attn_implementation="flash_attention_2",
|
| 23 |
)
|
| 24 |
|
| 25 |
+
|
| 26 |
@app.get("/")
|
| 27 |
def read_root():
|
| 28 |
return {"message": "API is live. Use the /predict endpoint."}
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def encode_image(image_path, max_size=(800, 800), quality=85):
|
| 32 |
+
"""
|
| 33 |
+
Converts an image from a local file path to a Base64-encoded string with optimized size.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
image_path (str): The path to the image file.
|
| 37 |
+
max_size (tuple): The maximum width and height of the resized image.
|
| 38 |
+
quality (int): The compression quality (1-100, higher means better quality but bigger size).
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
str: Base64-encoded representation of the optimized image.
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
with Image.open(image_path) as img:
|
| 45 |
+
# Convert to RGB (avoid issues with PNG transparency)
|
| 46 |
+
img = img.convert("RGB")
|
| 47 |
+
|
| 48 |
+
# Resize while maintaining aspect ratio
|
| 49 |
+
img.thumbnail(max_size, Image.LANCZOS)
|
| 50 |
+
|
| 51 |
+
# Save to buffer with compression
|
| 52 |
+
buffer = BytesIO()
|
| 53 |
+
img.save(
|
| 54 |
+
buffer, format="JPEG", quality=quality
|
| 55 |
+
) # Save as JPEG to reduce size
|
| 56 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"❌ Error encoding image {image_path}: {e}")
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
@app.get("/predict")
|
| 63 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
| 64 |
+
|
| 65 |
+
image = encode_image(image_url)
|
| 66 |
+
|
| 67 |
messages = [
|
| 68 |
+
{
|
| 69 |
+
"role": "system",
|
| 70 |
+
"content": "You are a helpful assistant with vision abilities.",
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"role": "user",
|
| 74 |
+
"content": [
|
| 75 |
+
{"type": "image", "image": f"data:image;base64,{image}"},
|
| 76 |
+
{"type": "text", "text": prompt},
|
| 77 |
+
],
|
| 78 |
+
},
|
| 79 |
]
|
| 80 |
+
text = processor.apply_chat_template(
|
| 81 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 82 |
+
)
|
| 83 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 84 |
inputs = processor(
|
| 85 |
text=[text],
|
|
|
|
| 90 |
).to(model.device)
|
| 91 |
with torch.no_grad():
|
| 92 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 93 |
+
generated_ids_trimmed = [
|
| 94 |
+
out_ids[len(in_ids) :]
|
| 95 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 96 |
+
]
|
| 97 |
output_texts = processor.batch_decode(
|
| 98 |
+
generated_ids_trimmed,
|
| 99 |
+
skip_special_tokens=True,
|
| 100 |
+
clean_up_tokenization_spaces=False,
|
| 101 |
)
|
| 102 |
return {"response": output_texts[0]}
|
model.py
CHANGED
|
@@ -1,10 +1,15 @@
|
|
| 1 |
import requests
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Define the parameters
|
| 6 |
params = {
|
| 7 |
-
"image_url": "https://
|
| 8 |
"prompt": "describe",
|
| 9 |
}
|
| 10 |
|
|
|
|
| 1 |
import requests
|
| 2 |
|
| 3 |
+
# curl -G "https://<uname>-<spacename>.hf.space/predict" \
|
| 4 |
+
# --data-urlencode "image_url=https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg" \
|
| 5 |
+
# --data-urlencode "prompt=Describe this image."
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
url = "https://danilohssantana-qwen2-5-vl-api.hf.space/predict"
|
| 9 |
|
| 10 |
# Define the parameters
|
| 11 |
params = {
|
| 12 |
+
"image_url": "https://cdn.britannica.com/35/238335-050-2CB2EB8A/Lionel-Messi-Argentina-Netherlands-World-Cup-Qatar-2022.jpg",
|
| 13 |
"prompt": "describe",
|
| 14 |
}
|
| 15 |
|
test.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
image_url = "https://cdn.britannica.com/35/238335-050-2CB2EB8A/Lionel-Messi-Argentina-Netherlands-World-Cup-Qatar-2022.jpg"
|
| 7 |
+
response = requests.get(image_url, stream=True)
|
| 8 |
+
|
| 9 |
+
if response.status_code == 200:
|
| 10 |
+
image = Image.open(BytesIO(response.content))
|
| 11 |
+
image.show()
|
| 12 |
+
else:
|
| 13 |
+
print(f"Failed to download image. Status code: {response.status_code}")
|