Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,20 +3,20 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
-
pipe =
|
| 13 |
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
MAX_IMAGE_SIZE = 2048
|
| 16 |
|
| 17 |
@spaces.GPU(duration=190)
|
| 18 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 19 |
-
pipe =
|
| 20 |
if randomize_seed:
|
| 21 |
seed = random.randint(0, MAX_SEED)
|
| 22 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import DiffusionPipeline
|
| 7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cpu")
|
| 13 |
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
MAX_IMAGE_SIZE = 2048
|
| 16 |
|
| 17 |
@spaces.GPU(duration=190)
|
| 18 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 19 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cuda")
|
| 20 |
if randomize_seed:
|
| 21 |
seed = random.randint(0, MAX_SEED)
|
| 22 |
generator = torch.Generator().manual_seed(seed)
|